4. Расчет зубчатых передач
4.1 Расчёт закрытой цилиндрической прямозубой зубчатой передачи
Определим межосевое расстояние: , где Ка = 49,5 вспомогательный коэффициент для прямозубых передач; Yа = b2 / а – коэффициент ширины венца колеса, равны 0,28…0,36; Тн = 1870 Н´м – вращающий момент на выходном валу редуктора;u = 4 - передаточное отношение пары.
КНb = 1- коэффициент неравномерности нагрузки по длине зуба;мм.
Принимаем ближайшее по ГОСТ 2185-66 аw = 180 мм.
Определим модуль зацепления m, мм:
,
где Кm=6,8 – вспомогательный коэффициент;
d2 – делительный диаметр колеса,
мм;
b2 – ширина венца колеса,
мм;
Примем b2=44 мм.
[σ]F =469 Н/мм2 – допускаемое напряжение изгиба материала колеса с менее прочным зубом;
.
Принимаем по ГОСТ2185-66 m = 4 мм.
Определим суммарное число зубьев шестерни и колеса:
;
Примем ZS =90 зубьев.
Определим число зубьев шестерни:
;
Примем Z1 =18 зуба.
Тогда
Z2 = ZS - Z1 = 90 - 18 =72.
Фактическое значение передаточного числа
Uф = Z2/Z1 = 72/18 =4
DU= = = 0 %,
что меньше допускаемых 4%.
Определим фактическое межосевое расстояние:
мм.
Определяем основные геометрические параметры шестерни и колеса. Полученные значения сведём в таблицу 4.1.
Таблица 4.1
Параметр | Формула | Шестерня | Колесо | |
мм | ||||
Диаметр | делительный | d = mZ | 72 | 288 |
Вершин зубьев | dа = d+2m | 80 | 296 | |
Впадин зубьев | df = d-2,4m | 62,4 | 278,4 | |
Ширина венца | b2 = Yа´а b1 = b2 + 4 | 48 | 44 |
Проверочный расчет
Проверим межосевое расстояние:
мм.
Проверка зубьев по контактным напряжениям:
sН = < [s]Н,
где КН = КНb ´ КНa ´ КНn- коэффициент нагрузки.
По таблице 4.2 при м/с и 9 степени точности КНa =1– коэффициент учитывающий распределенные нагрузки.
По таблице 4.3. для косозубых колёс при и 9 степени точности имеем КНv= 1,051;
К – вспомогательный коэффициент, К=436;
Ft – окружная сила в зацеплении,
Н;
Средние крутящий момент на колесе,
.
sН =Н/мм2.
sН= 1011 МПа < [s]Н =1127 Н/мм2
в передаче имеется недогрузка которая не должна превышать 10 %;
,
условие выполняется.
Проверка зубьев на выносливость по напряжениям изгиба:
.
где Ft – окружная сила в зацепление, Н;
КFα =1 – коэффициент, учитывающий распределенные нагрузки;
КFβ =1 – коэффициент неравномерности нагрузки;
КFυ =1,13 – коэффициент динамической нагрузки;
Yβ = - коэффициент, учитывающий наклон зубьев;
YF1 и YF2 – коэффициент формы зуба шестерни и колеса:
YF1= 4,2 при ,
YF2=3,61 при .
Н/мм2,
Н/мм2.
условие выполняется.
... По формуле 106 определяем уравновешивающий момент, Нм: МУР=4670,30,064=298,9 Нм Сравним полученные обоими методами уравновешивающие моменты, %: , (108) 7. Определение коэффициента полезного действия машинного агрегата Машинный агрегат состоит из ДВС, зубчатого редуктора и генератора электрического тока, соединенных последовательно. ДВС состоит из кривошипно-ползунного механизма и ...
... ,5 – 174,5 90 Δ, % 0,00 0,00 0,00 0,00 0,00 0,00 0,00 ПРИВЕДЁННЫЕ ФАКТОРЫ Положение 2 Расчёт ЭВМ Погрешность Δ, % – 156,6 – 156,6 0,00 IПР 0,22 0,22 0,00 2. Синтез и анализ кулачкового механизма 2.1 Построение диаграмм движения толкателя 1. Строится заданная диаграмма ускорений толкателя. Максимальная ордината ...
... задачи является конструкторско-исследовательским и решает не только конструкторские задачи разработки и применения муфт сцепления с тарельчатой пружиной, но и рассматривает влияние установки данного узла на технические и эксплуатационные показатели трактора в целом. Трактора класса 2 мощностью 120 л.с. предназначены для выполнения полного спектра сельскохозяйственных работ от подготовки почвы ...
... сельскохозяйственных процессов. Общее количество тракторов (пи), или инвентарный парк тракторов определится из выражения: nи=nэ/Kг (17) 1.3 Построение графиков загрузки тракторов Принимая состав машинно-тракторного парка, полученный расчетом за действительный, необходимо произвести загрузку каждого хозяйственного трактора по форме, показанной на рис. 2. (Содержание всех граф и цифры в ...
0 комментариев