4. Погрешности и классы точности средств измерений. Погрешности технических измерений
Наряду с нормированием полного комплекса н.м.х. по ГОСТ 8.009-84 для СИ массового применения практикуется упрощенное нормирование м.х. в виде класса точности по ГОСТ 8.401-80.
Класс точности – обобщенная характеристика типа средств измерений, выражаемая пределами допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность. Классы точности удобны для сравнительной оценки при выборе СИ, но недостаточны для достоверной оценки погрешностей каналов измерительной системы, введения поправок в результаты измерений с целью исключения систематических составляющих основной и дополнительных погрешностей, расчета погрешностей динамических измерений.
Пределы допускаемых основной и дополнительных погрешностей выражают в форме абсолютных, относительных или приведенных погрешностей.
Абсолютная погрешность – разность между показаниями прибора и истинным значением измеряемой величины, выраженная в единицах измеряемой величины. Пределы допускаемой абсолютной основной погрешности устанавливают в виде Δ = ±а или Δ = ±(а+bx).
Если абсолютная погрешность СИ во всем диапазоне измерений ограничена постоянным пределом ±а, такая погрешность называется аддитивной. Погрешность или составляющая погрешности, возрастающая пропорционально значениям измеряемой величины (Δ = ±bx), называется мультипликативной.
Абсолютная погрешность сама по себе не дает четкого представления о точности СИ, необходимо ее соотнесение с размером измеряемой величины. Поэтому чаще устанавливают пределы допускаемой приведенной погрешности γ = (Δ/ХN)100 = ±p,%. Реально приведенная погрешность характеризует погрешность только в одной точке диапазона измерений - ХN. Для остальных значений измеряемой величины это допускаемый предел (не более). Нормирующее значение ХN задается по следующим правилам.
ХN = хк, если хн ≥ 0, то есть нулевая точка на краю или вне диапазона измерений.
ХN = max{|хн|,|хк|}, если нулевая точка внутри диапазона измерений
ХN = | хк - хн |, для СИ с условным нулем.
ХN = хном, если установлено номинальное значение (для меры).
Наиболее наглядной характеристикой является предел относительной погрешности δ = (Δ/х)100 = ±q,%. При мультипликативной полосе погрешностей δ=±q=b. При одновременном присутствии аддитивной и мультипликативной составляющих предел относительной погрешности нормируется двучленной формулой
Δ = 100( а+bx)/х = γн|хк/х|+ γs = γк + γн (|хк/х|-1) = ±[с+d(|хк/х|-1)],%.
Физический смысл: с – приведенная к |хк| погрешность в конце шкалы (γк), d – приведенная погрешность в начале шкалы (γн). с = b+d; d = а/|хк|.
ГОСТ 8.401-80 определил и нормируемые числовые значения пределов допускаемых погрешностей р, q, c, d, которые должны выбираться из ряда:1· 10ⁿ; 1,5· 10ⁿ; (1,6· 10ⁿ); 2· 10ⁿ; 2,5· 10ⁿ; (3· 10ⁿ); 4· 10ⁿ; 5· 10ⁿ; 6· 10ⁿ (n = 1; 0; -1; -2 и т.д.).
Примеры обозначения в документации на СИ
γ = ±0,5% класс точности 0,5 0,5 или 0,5
δ = ±0,5% класс точности 0,5
δ = ±[0,02+0,01(|хк/х|-1)]% класс точности 0,02/0,01 0,02/0,01
Погрешность результата измерений имеет три источника и три составляющих: инструментальная погрешность Δи, включающая погрешности СИ, нормируемые в комплексе м.х. (основная Δо, дополнительные Δξ и динамическая Δτ), а также погрешность, возникающая при взаимодействии СИ с объектом (Δimp); методическая погрешность Δм, обусловленная методом измерений; субъективная или личная (погрешность считывания) Δл, обусловленная действиями оператора и его влиянием на объект, условия и средство измерений.
В частности, личная погрешность оператора средней квалификации при считывании показаний прибора с равномерной шкалой принимается Δл = 0,2 Хцд (0,2 цены деления).
Источниками методической погрешности являются:
1.Отличие фактически измеряемой величины от подлежащей измерению – погрешность модели объекта измерения.
2. Погрешность передачи размера измеряемой величины от объекта к СИ (отличие значений измеряемой величины на входе СИ и в точке «отбора» на объекте).
3. Погрешности обработки данных (отличие алгоритма вычислений от функции, связывающей результат измерений с измеряемой величиной).
Общие правила и формы представления результатов и погрешностей измерений приведены в рекомендации МИ1317-2004.
Результат измерений представляют именованным (неименованным в обоснованных случаях) числом совместно с характеристикой приписанной погрешности или статистической оценкой погрешности. При массовых технических измерениях указывают приписанную, заранее рассчитанную погрешность, при исследовательских – статистическую оценку погрешности.
Результат измерений могут сопровождать:
- точечные характеристики погрешности (СКО погрешности измерения σΔ или характеристики неисключенной систематической σ[Δс] и случайной σ[Δ°] составляющих погрешности), если результат измерений подлежит дальнейшей обработке (например, расчету результата и погрешностей косвенных или других функциональных измерений);
- интервальная характеристика погрешности - границы, в пределах которых погрешность измерений находится с заданной вероятностью, если результат измерений является окончательным.
Характеристики погрешности указывают в единицах измеряемой величины (абсолютная Δ) или в процентах от результата измерения (относительная δ).
Примеры записи результатов измерений:
Расход жидкости 10,75 м3/с; |∆н|=|∆в|=0,15 м3/с; Рд=0,95, или 10,75 м3/с; Δ=±0,15 м3/с; Рд=0,95, или 10,75 м3/с; -0,12 ≤ Δ ≤ 0,18 м3/с; Рд=0,95.
Электрическое напряжение 220,0 В; δ=±1%; Рд=0,95, или 220,0 В; σ[Δс]=0,2 В; σ[Δ°]=0,1 В.
Допускается (для исследовательских измерений) представление результата измерений доверительным интервалом, покрывающим с указываемой доверительной вероятностью истинное значение измеряемой величины, например: температура от 260 до 280 °С, Рд=0,95. При этом погрешности не указываются.
Характеристики погрешности выражают числом, содержащим не более двух значащих цифр: если число начинается с цифр 1 или 2, то в нем оставляют две значащих цифры с округлением в большую сторону, если число ≥3, оно округляется до одной значащей цифры по общим правилам округления. Пример – ряд числовых значений классов точности.
Результат измерения округляется до того же десятичного знака, которым оканчивается округленное значение абсолютной погрешности измерения. Округление проводится только в окончательной записи.
... приемлемые для широких кругов термины с описанием выражаемых ими понятий. Словарь содержит шесть разделов: Величины и единицы; Измерения; Результаты измерений; Средства измерений; Характеристика средств измерений; Эталоны. Кроме этого общего словаря, издается Словарь по законодательной метрологии, в котором освещается деятельность государственных метрологических служб в различных странах мира. ...
... . 3. Проблемы в системе метрологического обеспечения деятельности по стандартизации и сертификации Важное влияние на развитие системы метрологического обеспечения деятельности по стандартизации и сертификации в РФ оказывает несовершенство нормативной и методической базы. В частности, царит неразбериха и путаница с самым главным понятием – «испытание». Как отметил генеральный директор ...
ведении находятся стандарты, эталоны, метрическая система и система исчисления времени. Под метрологическим обеспечением измерений понимается деятельность метрологических и других служб, направленная: - на создание в стране необходимых эталонов, образцовых и рабочих средств измерений; - на их правильный выбор и применение; - на разработку и применение метрологических правил и норм; - на ...
... к средствам измерений обязывает метрологическую службу постоянно увеличивать перечень обслуживаемых средств измерений, из-за чего увеличивается объем работы метрологических служб в области обеспечения единства измерений в сфере здравоохранения. Возникает необходимость расширения подразделений, ответственных за проведение организационно-методических работ по обеспечению единства и достоверности ...
0 комментариев