Значения распределения Стьюдента выберите из таблицы

122681
знак
43
таблицы
22
изображения

2. Значения распределения Стьюдента выберите из таблицы

Доверительная

вероятность Р

Число измерений n
6 7 8
0,9 2,02 1,94 1,90
0,91 2,10 2,02 1,98
0,92 2,20 2,11 2,07
0,93 2,31 2,21 2,16
0,94 2,43 2,32 2,26
0,95 2,57 2,45 2,37
0,96 2,76 2,62 2,53
0,97 3,02 2,85 2,74
0,98 3,37 3,14 3,00
0,99 4,06 3,71 3,50

Задача 7. Оценка погрешности результата косвенных измерений

При косвенном измерении мощности в активной нагрузке Р = U²/ R получены значения сопротивления R ±1 Ом, напряжения U±3В. Определите предельные значения абсолютной и относительной погрешности результата измерений мощности. Задачу решите двумя способами:

а) сложением (с учетом коэффициентов влияния) относительных погрешностей прямых измерений сопротивления и напряжения, после чего рассчитывается предел абсолютной погрешности результата измерений;

б) расчетом предельных значений мощности по уравнению косвенных измерений: Pmax = U²max/Rmin, Pmin = U²min/Rmax, и предела абсолютной погрешности результата измерения ΔP = ±( Pmax – Pmin)/2, после чего определяется относительная погрешность.

Сравните полученные двумя способами результаты.

Вариант 1 2 3 4 5 6 7 8 9 10
R, Ом 150 150 150 150 150 150 150 150 150 150
U, В 120 150 160 180 200 210 220 230 240 250
Вариант 11 12 13 14 15 16 17 18 19 20
R, Ом 100 100 100 100 100 100 100 100 100 100
U, В 120 150 160 180 200 210 220 230 240 250
Вариант 21 22 23 24 25 26 27 28 29 30
R, Ом 50 50 50 50 50 50 50 50 50 50
U, В 120 150 160 180 200 210 220 230 240 250

Пример выполнения контрольной работы


Задача 1. Для измерительного прибора нормированы характеристики основной погрешности по ГОСТ 8.009-84: предел допускаемых значений систематической составляющей погрешности γс=±1%, предел среднего квадратического отклонения случайной составляющей погрешности σ=0,5%, предел допускаемой вариации Н=1%. Определите границы интервала значений основной погрешности измерительного прибора, в котором она находится с доверительной вероятностью Р=0,95.

Для определения доверительных границ основной погрешности применим метод рандомизации в отношении систематической составляющей погрешности и вариации, приняв их случайными величинами с равномерным законом распределения. Тогда

γо =  ±1,6%

 

Задача 2. Постройте график и определите коэффициенты функции преобразования измерительного преобразователя вида U=Sx+b по данным, полученным при его градуировке. Постройте графики зависимости абсолютной и относительной погрешности от входной величины х.

х 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
U 2,0 1,5 1,0 -1,2 -3,2 -4,1 -5,0 -5,5 -6,6 -8,5 -9,0

Коэффициенты S и b определяем методом наименьших квадратов. Для расчета коэффициентов функции преобразования измерительного преобразователя составляем таблицу

i 1 2 3 4 5 6 7 8 9 10 11 Σ

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 5,5

2,0 1,5 1,0 -1,2 -3,2 -4,1 -5,0 -5,5 -6,6 -8,5 -9,0 -38,6

0 0,01 0,04 0,09 0,16 0,25 0,36 0,49 0,64 0,81 1,0 3,85

0 0,15 0,2 -0,36 -1,28 -2,05 -3 -3,85 -5,28 -7,65 -9 -32,12

Погрешность измерительного преобразователя (по выходу) определяем, как отклонения значений выходного сигнала в каждой точке диапазона измерений от значений, рассчитанных по функции преобразования:

; .

Для расчета значений погрешностей составляем таблицу

i 1 2 3 4 5 6 7 8 9 10 11

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

2,34 1,17 0,0008 -1,17 -2,34 -3,508 -4,677 -5,847 -7,017 -8,186 -9,356

2,0 1,5 1,0 -1,2 -3,2 -4,1 -5,0 -5,5 -6,6 -8,5 -9,0
Δi -0,34 0,33 1 -0,03 -0,86 -0,6 -0,32 0,35 0,42 -0,31 0,36
δi -0,14 0,28 1250 0,026 0,4 0,17 0,07 -0,06 -0,06 0,04 -0,04

Зависимость абсолютной и относительной погрешности от входной величины х представим графически (относительная погрешность в точке 3 показана условно).

Задача 3. Для датчика силы, используемого в диапазоне температур от Тmin до Тmax нормирована функция влияния Ψ(t) = 0,05 %/°С. Нормальное значение температуры +20°С. Определить предельное значение γtmax, математическое ожидание М(γt) и среднее квадратическое отклонение σ(γt) дополнительной погрешности в заданном интервале температуры: Тmin = - 60°С, Тmax = +150°С.

Предельное значение дополнительной погрешности в диапазоне температур определяем по формуле

γtmax = Ψ(t) (Тmax – Тну) = 0,05(150-20) = 6,5%.


Математическое ожидание дополнительной погрешности в диапазоне температур определяем по той же формуле, заменив Тmax значением математического ожидания температуры М(t) = ( Тmax + Тmin)/2 = (150 – 60)/2 = 45°С.

М(γt) = Ψ(t) (М(t) – Тну) = 0,05(45 - 20) = 1,25%

Среднее квадратическое отклонение σ(γt) дополнительной погрешности в заданном интервале температуры определяем по формуле

,

где D(t) – дисперсия значений температуры в заданном интервале. Приняв температуру в заданном интервале случайной величиной с равномерным законом распределения, определяем

D(t) = ( Тmax - Тmin)²/12 = (150 + 60)²/12 = 3675 (°С)².

Проведя вычисления, получим

Задача 4. Выберите из трех имеющихся вольтметр для измерения напряжения в интервале от Umin = 24 В до Umax = 28 В с наименьшей относительной погрешностью.

Вольтметр №1 Класс точности 0,5
Предел измерений 60 В
Вольтметр №2 Класс точности 1,0
Предел измерений 30 В
Вольтметр №3 Класс точности 0,5/0,2
Предел измерений 50 В

Для вольтметров №1 и №2, класс точности которых нормирован в виде приведенных погрешностей, пределы допускаемой абсолютной погрешности будут постоянны во всем диапазоне измерений: Δ =. Тогда относительную погрешность измерения напряжения можно определить по формуле δ = .

Для вольтметра №3 относительную погрешность измерения напряжения определим по формуле δ = 0,5 + 0,2 (). Произведя вычисления, получим:

U = 24 В U = 28 В
Вольтметр №1

δ =0,5= 1,25%

δ =0,5≈ 1,1%

Вольтметр №2

δ =1,0= 1,25%

δ =1,0≈ 1,1%

Вольтметр №3

δ =0,5+0,2(- 1) ≈ 0,7%

δ =0,5+0,2(- 1) ≈ 0,7%

Наименьшей относительной погрешностью при измерении напряжения в интервале от Umin = 24 В до Umax = 28 В обладает вольтметр №3.

Задача 5. В паспорте электронного милливольтметра указаны следующие нормируемые метрологические характеристики и рабочие условия его применения:

- верхний предел измерений 300 мВ;

- основная приведенная погрешность прибора – γ = 0,2%;

- дополнительная погрешность, вызванная отклонением влияющей величины от ее нормального значения, не превышает:

0,6 основной погрешности на каждые 10°С изменения температуры;

0,6 основной погрешности на каждые 10% изменения напряжения питания;

1,0 основной погрешности на 1% изменения частоты питающего напряжения;

- рабочие условия эксплуатации милливольтметра:

 температура окружающей среды от 10 до 35°С;

 напряжение питания  В;

 частота питающего напряжения 50±1 Гц;

- нормальные условия характеризуются значениями влияющих величин: температуры - 20°С, напряжения питания – 220 В, частоты питающего напряжения 50 Гц.

Определить предельную относительную погрешность милливольтметра в рабочих условиях при измерении напряжения 100 мВ.

Предельную относительную погрешность милливольтметра в рабочих условиях при измерении напряжения 100 мВ определим как сумму предельных значений основной и дополнительных относительных погрешностей по формуле

Рассчитаем значения составляющих погрешности.

; 0,54%;

;

Подставляя расчетные значения, получим


≈ 1,5%

Задача 6. При многократном измерении тока получены значения в мА:10,09; 10,12; 10,15; 10,11; 10,13; 10,08; 10,16. Определить доверительные границы для истинного значения измеряемой величины с вероятностью Р = 0,95 (t = 2,45).

За результат измерений принимаем среднее из полученных значений тока: I = 10,12 мА.

Среднее квадратическое отклонение результата измерений (среднего) находим по формуле

 мА.

Доверительные границы погрешности результата измерений

Δ = ±tσ = ±2,45∙0,0111≈ ±0,03 мА

Доверительные границы для истинного значения измеряемой величины представим в виде: 10,09 ≤ I ≤ 10,15; Р = 0,95.

Задача 7. При косвенном измерении мощности в активной нагрузке Р = U²/R получены значения сопротивления R = 200±1Ом, напряжения U = 100±3В. Определить предельные значения абсолютной и относительной погрешности результата измерений мощности.

Результат измерений определяем по исходной зависимости

Для оценки погрешности измерения проведем линеаризацию функции:

lnР = 2lnU- lnR.

Тогда относительная погрешность измерения мощности δР = 2 δUR

Вычисляем относительную погрешность δР = ± (2) 100 = ±6,5%

Абсолютная погрешность результата измерений

ΔР = ±Вт.

Применим другой способ определения погрешности результата измерений.

Абсолютная погрешность результата измерений

ΔР, где, .

 ΔР3,25 Вт.

Относительная погрешность

δР

Полученные двумя способами оценки погрешности идентичны.


Лабораторные работы

 

Лабораторная работа №1

Методы ИЗМЕРЕНИя НАПРЯЖЕНИЯ И СИЛЫ ТОКА В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

Цель работы - изучение основных методов и средств измерения напряжения и силы тока в электрических цепях и получение навыков их практического использования.

Измерение - это последовательность экспериментальных и вычислительных операций, осуществляемая с целью нахождения значения физической величины, характеризующей некоторый объект или явление.

Измерение завершается оценкой степени достижения цели, то есть определением степени приближения найденного значения к истинному значению величины.

По способу получения числового значения измеряемой величины измерения делят на прямые, косвенные, совокупные и совместные.

Прямым измерением называется измерение, при котором искомое значение величины находят непосредственно из данных эксперимента. Например, измерение длины линейкой, силы тока и напряжения амперметром и вольтметром соответственно.

Косвенными измерениями называют такие измерения, в которых исследуемая величина не измеряется непосредственно, а ее значение вычисляется по определенной математической зависимости, связывающей ее с другими величинами, значения которых получают прямым измерением. Например, определение количества тепла  на резисторе по результатам прямых измерений величин : .

Совокупными измерениями называют измерения нескольких одноименных величин, производимые одновременно, при которых искомые значения величины находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.

Совместными измерениями называют производимые одновременно измерения двух или нескольких не одноименных величин для нахождения зависимости между ними.

Методы прямых измерений можно разделить на две группы: методы непосредственной оценки и методы сравнения с мерой.

Метод непосредственной оценки - метод измерений, при котором значение физической величины определяют непосредственно по отсчетному устройству прибора прямого действия.

Метод сравнения с мерой - метод измерений, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например, измерение напряжения постоянного тока путем сравнения с ЭДС нормального элемента.

Есть несколько разновидностей метода сравнения с мерой. К ним относятся:

a)  дифференциальный метод сравнения с мерой, при котором на измерительный прибор воздействует разность между измеряемой и известной величиной, воспроизводимой мерой;

b)  нулевой метод - метод сравнения с мерой, в котором результирующий эффект воздействия на прибор сравнения доводят до нуля;

c)  замещения - метод сравнения с мерой, в котором измеряемую величину замещают величиной, воспроизводимой мерой.

Ток и напряжение являются наиболее распространенными электрическими величинами, характеризующими режим электрической цепи. Измерители тока и напряжения независимо от их назначения должны при включении не нарушать режима работы цепи измеряемого объекта, обеспечивать малую погрешность измерений, высокую чувствительность и высокую надежность.

Измерение напряжения и тока выполняют методами непосредственной оценки и сравнения. Если необходимая точность измерения может быть обеспечена амперметрами и вольтметрами электромеханической группы, то следует предпочесть метод непосредственного отсчета. Если необходимо измерять с более высокой точностью, следует использовать приборы, действие которых основано на методах сравнения.

При использовании метода непосредственной оценки амперметр подключают последовательно, а вольтметр - параллельно исследуемому участку цепи. Включение амперметра и вольтметра в исследуемую цепь изменяет измеряемую величину. Это вызвано тем, что сопротивление амперметра не равно нулю, а вольтметра - не равно бесконечности. Схема подключения амперметра при непосредственной оценке показана на рис. 1, где  - источник ЭДС с внутренним сопротивлением ,  - сопротивление нагрузки.

Рис.1. Схема подключения амперметра при непосредственной оценке

Пусть требуется измерить ток в цепи, обладающей сопротивлением нагрузки . Действительное (истинное) значение тока  в этой цепи будет:


После включения амперметра, имеющего внутреннее сопротивление , ток в цепи изменится и станет равным

и амперметр покажет именно это значение тока.

Погрешность измерения в этом случае будет обусловлена внутренним сопротивлением амперметра (часто ее называют погрешностью согласования) и равна:

Как видно из приведенной формулы, погрешность измерения будет тем меньше, чем меньше . Этим и объясняется стремление иметь амперметр с возможно меньшим внутренним сопротивлением.

После включения вольтметра (при непосредственной оценке), имеющего внутреннее сопротивление  (рис. 2), напряжение на зажимах будет равно:


Рис. 2. Схема подключения вольтметра при непосредственной оценке

Если учесть, что напряжение на нагрузочном сопротивлении до подключения вольтметра было

,

то погрешность измерения будет равна

Погрешность тем меньше, чем больше сопротивление . Этим объясняется стремление иметь вольтметр с возможно большим внутренним сопротивлением.

На рис. 3 показана схема нулевого метода измерения напряжения.

Рис. 3. Схема нулевого метода измерения напряжения


В этой схеме вольтметр  служит для измерения разностного напряжения  между измеряемым  и известным компенсационным напряжением , то есть выполняет функции прибора сравнения. Вольтметр  используется для регистрации напряжения . После уравновешивания схемы резистором  до достижения ≈ 0, измеряемое напряжение  определяется как

Если внутреннее сопротивление вольтметра  достаточно велико, то можно записать

Схема нулевого метода измерения тока показана на рис. 4.

Рис. 4. Схема нулевого метода измерения тока

В схеме осуществляется компенсация измеряемого тока  компенсирующим , вызванным опорным источником ЭДС . Индикатором компенсации тока (прибором сравнения) служит вольтметр . Значение измеряемого тока  после уравновешивания схемы резистором  до достижения показания вольтметра, близкого к нулю UV ≈ 0 , определяют по показаниям амперметра:

Порядок выполнения работы

1.         Собрать схему рис. 1. . Установить Е,  и  (по вариантам)

Вариант 1 2 3 4 5 6 7 8 9 0
Е, В 10,1 10,2 10,3 10,4 10,5 10,6 10,7 10,8 10,9 11,0

, Ом

11 12 13 14 15 16 17 18 19 20

, кОм

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0
Вариант 1 2 3 4 5 6 7 8 9 0
Е, В 10,1 10,2 10,3 10,4 10,5 10,6 10,7 10,8 10,9 11,0

, Ом

110 120 130 140 150 160 170 180 190 200

, кОм

101 102 103 104 105 106 107 108 109 200

Измерить значение тока в цепи, созданного источником ЭДС Е с внутренним сопротивлением . Рассчитать значение тока Iри сравнить с показанием амперметра.

2.         Рассчитать действительное (истинное) значение тока  и погрешность измерения тока γА.

3.         Установить внутреннее сопротивление амперметра RA = 1 Ом и повторить операции по п.п. 2-3.

4.         Собрать схему рис. 2. . Установить Е,  и по вариантам

5.         Измерить значение напряжения в цепи. Рассчитать значение напряжения Uр и сравнить с показанием вольтметра.

6.         Рассчитать действительное (истинное) значение напряжения Uи и погрешность измерения напряжения γВ.

7.         Установить внутреннее сопротивление вольтметра RV = 200 кОм и повторить операции по п.п. 6-7.

8.          Собрать схему рис.3. .= 10 В. = 1 кОм. Установить Ех по вариантам

Вариант 1 2 3 4 5 6 7 8 9 0

Ех, В

1,1 2,2 3,3 4,4 5,5 4,6 3,7 2,8 1,9 2,0

9.         Уравновесить схему резистором  до достижения .


Информация о работе «Метрология и метрологическое обеспечение»
Раздел: Промышленность, производство
Количество знаков с пробелами: 122681
Количество таблиц: 43
Количество изображений: 22

Похожие работы

Скачать
147234
13
2

... приемлемые для широких кругов термины с описанием выражаемых ими понятий. Словарь содержит шесть разделов: Величины и единицы; Измерения; Результаты измерений; Средства измерений; Характеристика средств измерений; Эталоны. Кроме этого общего словаря, издается Словарь по законодательной метрологии, в котором освещается деятельность государственных метрологических служб в различных странах мира. ...

Скачать
19158
0
0

... . 3.    Проблемы в системе метрологического обеспечения деятельности по стандартизации и сертификации Важное влияние на развитие системы метрологического обеспечения деятельности по стандартизации и сертификации в РФ оказывает несовершенство нормативной и методической базы. В частности, царит неразбериха и путаница с самым главным понятием – «испытание». Как отметил генеральный директор ...

Скачать
17339
0
1

ведении находятся стандарты, эталоны, метрическая система и система исчисления времени. Под метрологическим обеспечением измерений понимается деятельность метрологических и других служб, направленная: - на создание в стране необходимых эталонов, образцовых и рабочих средств измерений; - на их правильный выбор и применение; - на разработку и применение метрологических правил и норм; - на ...

Скачать
32023
0
0

... к средствам измерений обязывает метрологическую службу постоянно увеличивать перечень обслуживаемых средств измерений, из-за чего увеличивается объем работы метрологических служб в области обеспечения единства измерений в сфере здравоохранения. Возникает необходимость расширения подразделений, ответственных за проведение организационно-методических работ по обеспечению единства и достоверности ...

0 комментариев


Наверх