Обработка электрического сигнала с помощью фильтрации

12295
знаков
0
таблиц
27
изображений

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

 

Кафедра «Медицинские приборы и оборудование»


Курсовой проект

на тему:

«Обработка электрического сигнала с помощью фильтрации»

по дисциплине «Методы обработки биомедицинских сигналов»


Пенза 2005

Введение

Методы и техника обработки сигналов в настоящее время составляют основу важнейших разработок во многих областях научных знаний. В течение последних лет методы цифровой обработки сигналов приобрели большую важность ввиду того, что теперь они не только заменяют классические аналоговые методы во многих традиционных областях техники, но и применяются во многих новых областях, таких как медицинская техника.

В большинстве случаев электрический фильтр представляет собой частотно-избирательное устройство. Следовательно, он пропускает сигналы определенных частот и задерживает или ослабляет сигналы других частот. Наиболее общими типами частотно-избирательных фильтров являются фильтры нижних частот (которые пропускают низкие частоты и задерживают высокие), фильтры верхних частот (которые пропускают высокие частоты и задерживают низкие), полосно-пропускающие фильтры (которые пропускают полосу частот и задерживают те частоты, которые расположены выше или ниже этой полосы) и полосно-заграждающие фильтры (которые задерживают полосу частот и пропускают частоты, расположенные выше и ниже этой полосы).


1. Основы анализа электрических сигналов

Применение методов цифровой обработки сигналов и, в частности, цифровой фильтрации широко распространено и используется во многих важных областях исследовании, например: обработка речевых сигналов, цифровая телефония и цифровая связь, обработка фототелеграфных и телевизионных изображений, радио- и гидролокационные системы, биология и медицина, космические исследовательские и действующие системы, исследование земных ресурсов и т.д.

В биомедицинской практике используется множество сигналов, имеющих электрическую природу. При регистрации и оценке таких сигналов сталкиваются с значительным влиянием на конечные результаты помех различного рода, поэтому биомедицинские сигналы нуждаются в обработке.

Из всех методов, используемых при цифровой обработке сигналов, наиболее важным является цифровая фильтрация. В прошлом интерес ограничивается теоретическими исследованиями, но последнее время она используется во многих важных практических приложениях для обработки одномерных и двумерных сигналов.

2. Исследование полосового фильтра

 

Полосовой (или полосно-пропускающий) фильтр представляет собой устройство, которое пропускает сигналы в диапазоне частот с шириной полосы BW, расположенной приблизительно вокруг центральной частоты ω0 (рад/с). На рисунке 1 изображена идеальная и реальная амплитудно-частотные характеристики полосового фильтра.


Рисунок 1

В реальной характеристике частоты ωL и ωU представляют собой нижнюю и верхнюю частоты среза и определяют полосу пропускания ωL≤ω0≤ωU и ее ширину BW= ωU – ωL.

В полосе пропускания амплитудно-частотная характеристика никогда не превышает некоторого определенного значения, например А1. Существует также две полосы задерживания, где значение амплитудно-частотной характеристики никогда не превышает заранее выбранного значения, наример А2. Диапазоны частот пежду полосами задерживания и полосой пропускания образуют нижнюю и верхнюю переходные области, в которых характеристика является монотонной.

Отношение Q= ω0/BW характеризует качество самого фильтра и является мерой его избирательности. Высокому значению Q соответствует относительно узкая, а низкому значению Q – относительно широкая ширина полосы пропускания. Коэффициент усиления фильтра К определяется как значение его амплитудно-частотной характеристики на центральной частоте.

Передаточная функция полосно-пропускающего фильтра имеет следующий вид:


Для исследования полосового фильтра, ввели в командное окно пакета MATLAB оператор «rlcdemo». Открылось окно, предназначенное для построения аналогового фильтра. Выбрали полосовой фильтр с последовательным соединением соединением элементов RLC: R=4,5; L=2,5; C=0,5 (рисунок 2).

Рисунок 2

Исходя из значений системных параметров рассчитали коэффициенты полиномов числителя и знаменателя:

G(s)= 1.8s

S2+1.8s+0.8

Средствами MATLAB построли прередаточную функцию системы sys:

>> sys=tf([0 1.8 0], [1 1.8 0.8])

Transfer function:

1.8 s

s^2 + 1.8 s + 0.8

Затем мы исследовали характеристики фильтра.

Во-первых, это диаграмма Боде (ЛАЧХ И ФЧХ) (рисунок 3).

>> bode(sys)

Рисунок 3

Во-вторых, это реакция системы на единичное воздействие (рисунок 4).

>> step(sys)

Рисунок 4


В-третьих, это диаграмма Найквиста, то есть представление вещественной и мнимой частей характеристики в зависимости от частоты (рисунок 5).

>> nyquist(sys)

Рисунок 5

И наконец, это импульсная характеристика (рисунок 6).

>> impulse(sys)

Рисунок 6


Сравнивая полученные характеристики фильтра с представленными на рисунке 2, убедились, что они идентичны.


Информация о работе «Обработка электрического сигнала с помощью фильтрации»
Раздел: Промышленность, производство
Количество знаков с пробелами: 12295
Количество таблиц: 0
Количество изображений: 27

Похожие работы

Скачать
16189
5
0

... . В современной радиотехнике задача создания помехоустойчивых систем является одной из центральных. В данной курсовой работе осуществлено моделирование процесса обработки сигнала с широтно-импульсной модуляцией и помехи в приемном устройстве системы передачи информации. На первом этапе составлены математические модели полученного по каналу связи радиосигнала с широтно-импульсной модуляцией и ...

Скачать
326231
12
0

... рисунков в формате А0-А1 со скоростью 10-30 мм/с. Фотонаборный аппарат Фотонаборный аппарат можно увидеть только в солидной полиграфической фирме. Он отличается своим высоким разрешением. Для обработки информации фотонаборный аппарат оборудуется процессором растрового изображения RIP, который функционирует как интерпретатор PostScript в растровое изображение. В отличие от лазерного принтера в ...

Скачать
38635
2
11

... уровня при периодическом фонтанировании проводится исследование методом восстановления давления. При постоянном фонтанировании согласно обычной технологии скважина закрывается на КВД после последнего режима исследований методом "установившихся" отборов. При периодическом фонтанировании скважина закрывается на КВД после подъема уровня до устья скважины, т.е. перед началом ее фонтанирования. Так ...

Скачать
44493
3
33

... диаграмм с сохранением результатов в стандартном формате VCD (Value Change Dump), воспринимаемом всеми системами работы с временными диаграммами. [1] 2.МЕТОД ПРОЕКТИРОВАНИЯ УСТРОЙСТВ ФИЛЬТРАЦИИ ПО РАБОЧИМ ПАРАМЕТРАМ Методика проектирования фильтров по рабочим параметрам основана на нахождении значений элементов, нармированных по частоте и сопротивлению нагрузки, путём аппроксимации или с ...

0 комментариев


Наверх