2.7.3 Подбор трубопроводов для сливной линии
Необходимый внутренний диаметр сливной линии при скорости течения жидкости по ней = 2 м/с, м:
d = = 60 мм.
Толщина стенки по рекомендации [3] принята: = 2.5
d = 60 + 2 2.5 = 65 мм.
По учебнику [2] принят трубопровод:
d = 65 мм; d = 60 мм; = 2.5 мм.
2.8 Выбор фильтров
Фильтровальная установка – общая для всех приводов машины. Ее пропускная производительность должна быть на 20% больше суммарной производительности всех насосов.
Фильтры выбраны по необходимой для насосов тонкости фильтрации, расходу жидкости и максимальному давлению.
1. Необходимая тонкость фильтрации 10 мкм;
2. Расход жидкости Q = 336 л/мин.
Q = 1.2 Q,
Q = 1.2 336 = 403 л/мин.
По учебнику [2] принято 3 параллельно соединенных фильтра 1.1.40.10.
Тонкость фильтрации 10 мкм.
Номинальный расход: 160 л/мин (для одного фильтра).
Выбор распределителей
Распределители выбраны по принципиальной схеме, расходу и давлению жидкости, а также по типу управления.
Распределитель Р1:
1. Схема – с открытым центром;
2. Давление – р = 20 МПа;
3. Расход – Q = 2.04 10 м/с = 122 л/мин.
4. Вид управления – гидравлическое.
Принят распределитель [3]: В.И.16.64
Распределитель Р4:
1. Схема – закрытый центр;
2. Давление номинальное – р = 20 МПа;
3. Расход Q = 3.6 10 м/с = 216 л/мин.
4. Вид управления – электрогидравлическое.
Принят распределитель [3]: В.ЕХ.16.44
Параметры принятых распределителей сведены в таблицу 4.
Таблица 4 – Параметры распределителей
Модель распределителя | В.И.16.64 | В.ЕХ.16.44 |
Диаметр условного прохода, мм | 16 | 16 |
Расход рабочей жидкости, л/мин: номинальный максимальный | 125 240 | 125 240 |
Номинальное давление в напорной линии, МПа | 32 | 32 |
Вид схемы | с открытым центром | закрытым центром |
Вид управления | гидравлическое | электрогидравлическое |
Выбор предохранительных клапанов
Предохранительные клапаны выбраны по максимальному давлению и расходу жидкости защищаемой линии. Клапаны первичной и вторичной защиты приняты непрямого действия.
Подбор клапана первичной защиты непрямого действия:
1. Q = 122 л/мин; р= 30 МПа.
Принят клапан [3]: МКПВ 10/2Т2П3110ХЛ4.
2. Q = 216 л/мин; р= 30 МПа.
Принят клапан [3]: МКПВ 20/2Т2П3110ХЛ4.
Подбор клапанов вторичной защиты непрямого действия:
Выбраны по давлению вторичной настройки: р= 33Мпа.
Приняты клапаны [3] МКПВ 20/2Т3П3110ХЛ4.
Параметры предохранительных клапанов сведены в таблицу 5.
Таблица 5 – Параметры предохранительных клапанов
Модель клапана | МКПВ 10/2Т2П3110ХЛ4 | МКПВ 20/2Т2П3110ХЛ4 |
Диаметр условного прохода, мм | 10 | 20 |
Расход жидкости, л/мин номинальный максимальный | 80 160 | 160 400 |
Номинальное давление настройки, МПа | 32 | 32 |
Вид действия клапана | Непрямое | прямое |
= = 4.2 м/с.
Re = = 2856
Режим турбулентный (Re > 2330) Коэффициент линейного сопротивления определен:
=
= = 0.043
Зная, найдены линейные потери по формуле (23):
= 0.135 10 Па.
Местные потери давления:
где – коэффициент местного сопротивления:
=
По расчетной схеме (рисунок 2) определен суммарный коэффициент
=120.1+17+30.2+50.6=24.8
Местные потери определяются по формуле (27):
==0.19510Па
Потери давления на участке Н-ГД определены по формуле (23)
=0.13510+0.19510=0.33010 Па
Потери давления от гидродвигателя до сливной линии:
=+ (30)
Линейные потери давления при l=5 м:
==0.06810 Па
Коэффициент местного сопротивления:
=80.1+20.2+17+50.6=21.2
Местные потери:
==0.16610Па
Потери давления на участке ГД-СЛ определены по формуле (30):
=0.06810+0.16610=0.23410 Па
Потери давления от сливной линии до бака:
=+
Скорость жидкости в сливной линии из формулы (25) при d=0.63 м,
Q=5.6410 м/с.
==1.7 м/с.
Число Рейнольдса по формуле (26)
Re==3683
Коэффициент гидравлического трения по формуле (27):
=0.041
Линейные потери давления при l = 5 м:
=0.041=0.0040510Па
Коэффициент местного сопротивления на участке СЛ-Б:
=190.1+17+70.2+250+1+50.6=124.3
Местные потери давления
=0.16210 Па
Суммарные потери давления:
0.16210+0.23410+0.33010=0.726 МПа.
Результаты по расчету потерь давления представлены в таблице 6.
Таблица 6 – Результаты расчетов потерь давления
Уча- сток | Номер Эле- менов | L, м | D, м | м/с | м/с | Re | МПа | МПа | |||
Н-ГД | 1–15 | 10 | 0.025 | 2.04 | 4.2 | 2856 | 0.043 | 0.135 | 24.8 | 0.177 | 0.330 |
ГД-СЛ | 16–25 | 5 | 0.025 | 2.04 | 4.2 | 2856 | 0.043 | 0.068 | 21.2 | 0.151 | 0.234 |
СЛ-Б | 26–52 | 5 | 0.065 | 5.64 | 1.7 | 3683 | 0.041 | 0.004 | 124.3 | 0.156 | 0.162 |
Сумма потерь давления 0.726 МПа |
зке гидропривод долговечен и надежен. Он позволяет плавно, в широком диапазоне регулировать движение исполнительного органа, Объемный гидропривод допускает достаточно произвольное расположение его элементов на машине, что чрезвычайно важно для мобильных машин, работающих в сложных условиях. К недостаткам гидропривода относятся: сравнительно невысокий КПД; необходимость высокой герметичности ...
... потери напора в процентах от линейных………………….40 Температура рабочей жидкости t, оС……………………...................70 Температура воздуха t, оС……………………………………………..20 Произвести гидравлический расчет гидросистемы зажима бревна гидравлической тележкой ПРТ8-2 по исходным данным. Рис. 1. Схема гидравлическая принципиальная механизма зажима бревна гидравлической тележки ПРТ8 - 2: 1 – гидробак; ...
... 890 18 -45 -40…+25 -40…+65 При отрицательных температурах воздуха МГЕ-46В 890 46 -32 -10…+60 +5…+85 При положительных температурах воздуха 2.8 Выбор трубопроводов и расчет толщины их стенок Для гидропривода машины жесткие трубопроводы изготовляют из стальных бесшовных холоднодеформированных труб по ГОСТ 8734, выполненных из стали 45. Расчет напорного трубопровода РО1 Необходимый ...
... к гидромотору М и одновременно к гидроцилиндру тормоза, размыкая тормозное устройство. Противоположная полость гидромотора при этом соединяется со сливной гидролинией. 3. Расчет объемного гидропривода 3.1 Определение мощности гидропривода и насоса Полезную мощность гидродвигателя возвратно-поступательного действия (гидроцилиндра) Nгдв , кВт, определяют по формуле: Nгдв=М·2π·nм, ...
0 комментариев