6.2. РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ

Металлопластовые трубы представляют из себя полиэтиленовые трубы, монолитная сетка которых армирована проволочным каркасом. Соединительные законцовки выполнены из полиэтилена низкого давления. Таким образом, основными материалами являются малоуглеродистая сталь и полиэтилен низ­кого давления (ПНД).

Предел текучести стальной проволоки по ГОСТ 32.82-46 равен 310 МПа. Предел текучести полиэтилена низкого давления по ГОСТ 18599-83 должен быть не менее 20 МПа (200 кгс/см2).

Нормативное длительное сопротивление разрушения материала матрицы в зависимости от условий работы регламентируется СН 550-82. Коэффициент условий работы приведен в табл. 1.

Модуль упругости ПНД в расчетах принимается равным 800 МПа.

Коэффициент Пуассона μ для труб из полиэтилена низкого давления работающих при температуре до 40 °С равен 0,42–0,44. При температуре выше 40 °C коэффициент Пуассона допускается равным 0,5.

При расчете на прочность тела труб, находящихся под действием внутреннего давления, определяются напряжения в арматуре, эквивалентные напряже­ния по Мизесу и контактные напряжения в полимерной матрице.

6.3. РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ

МЕТАЛЛОПЛАСТОВЫХ ТРУБ

С целью прогноза характера разрушения металлопластовых труб было исследовано их напряженно-деформированное состояние методом конечных элементов.

Рассмотрим в качестве примера трубу диаметром 95 мм. Конечноэлементная модель конструкции металлопластовой трубы диаметром 95 мм содержит 2129 конечных элементов и 720 узлов. Армирующая стальная сетка моделировалась трехмерными стержневыми КЭ, а полиэтиленовая заливка - толстостен­ными оболочечными КЭ. Фрагмент сетки конечных элементов представлен на рис. 30. Там же показаны номера конечных элементов (1033-1097), располо­женных в одном ряду сетки и моделирующих арматуру в окружном направле­нии.

Результаты исследования напряженно - деформированного состояния кон­струкции металлопластовых труб с помощью конечноэлементной модели МПТ представлены в таблице 3.

Таблица 3

Распределение напряжений в МПТ при давлении 4 МПа

Диаметр труб, мм Толщина стенки, мм Размер ячейки, мм х мм Диаметр арматуры, мм

Напряжение по Мизесу в ПЭ элементах, σэкв, МПа

Напряжение в продольной арматуре, σпрод, МПа

Напряжение в окружной арматуре, σокр, МПа

Запас прочности, σт,/σок,

89

89

89

89

89

89

95

95

95

95

95

95

115

115

115

115

115

115

132

132

132

132

132

132

10,5

10,5

10,5

10,5

10,5

10,5

10,5

10,5

10,5

10,5

10,5

10,5

12,0

12,0

12,0

12,0

12,0

12,0

12,0

12,0

12,0

12,0

12,0

12,0

6 х 6

6 х 6

8 х 8

8 х 8

10 х 10

10 х 10

6 х 6

6 х 6

8 х 8

8 х 8

10 х 10

10 х 10

6 х 6

6 х 6

8 х 8

8 х 8

10 х 10

10 х 10

6 х 6

6 х 6

8 х 8

8 х 8

10 х 10

10 х 10

2,5

3,0

2,5

3,0

2,5

3,0

2,5

3,0

2,5

3,0

2,5

3,0

2,5

3,0

2,5

3,0

2,5

3,0

2,5

3,0

2,5

3,0

2,5

3,0

0,714212

0,504532

0,933721

0,663100

1,14126

0,814721

0,769539

0,543624

1,00507

0,713771

1,23153

0,879157

0,931415

0,659495

1,20952

0,861841

1,47755

1,05895

1,08445

0,768042

1,40847

1,00385

1,73090

1,24026

-0,13237

-0,059557

-0,23781

-0,10799

-0,45901

-0,21863

-0,13227

-0,05726

-0,27118

-0,13207

-0,44840

-0,21225

-0,26904

-0,11706

-0,56914

-0,26034

-0,96814

-0,45407

-0,77566

-0,38976

-2,5616

-1,3762

-1,1641

-0,60425

180,75

127,67

236,25

167,76

289,01

206,27

194,66

137,50

254,31

180,58

311,81

222,55

235,67

166,84

307,36

218,90

375,89

269,25

274,70

194,46

358,48

255,29

438,44

314,03

1,72

2,43

1,31

1,85

1,07

1,50

1,59

2,25

1,22

1,72

0,99

1,39

1,32

1,86

1,01

1,42

0,82

1,15

1,13

1,59

0,86

1,21

0,71

0,99

Результаты исследования напряженно-деформированного состояния металлопластовой трубы, с использованием приведенной выше модели, показали, что наиболее напряженным элементом конструкции является арматура в ок­ружном направлении. В предположении упругой работы арматуры при внут­реннем давлении 12.0 МПа в средней части трубы для наиболее наряженных элементов растягивающие напряжения достигают 565 МПа.

Распределение напряжений по длине трубы для средней части является практически равномерным. При таком высоком уровне растягивающих напряжений возможно разрушение арматуры в окружном направлении. Предположим, что в силу каких-то случайных факторов первым разрушится конечный элемент номер 1065, образованный узлами 361 и 362, Удаляем этот элемент из сетки КЭ и проводим расчет для новой сетки при том же уровне внутреннего давления (120 МПа). Удаление элемента 1065 моделирует возникновение концентратора напряжений в окрестности первой точки разрушения окружной ар­матуры. Наличие такого концентратора приводит к резкому росту напряжений (до 760 МПа) в соседних 1049 и 1081.

 На следующем этапе расчета удаляем из сетки КЭ три элемента - 1049, 1065, 1081. Это приводит к росту напряжений в КЭ с номерами 1033, 1097 до 1034 МПа. При этом напряжения по Мизесу в узлах 361-362, принадлежащих оболочечным КЭ возрастет до 15.6 МПа

Проведенный анализ напряженно-деформированного состояния металлопластовой трубы для рассмотренных вариантов сетки КЭ позволяет сцепить вы­вод о том, что основной несущий элемент - окружная арматура полностью ис­черпывает свою несущую способность, после чего происходит перераспределе­ние внутренних усилий меледу арматурой и полиэтиленовой матрицей и при достижении в полиэтиленовых оболочечных элементах разрушающего напря­жения по Мизесу происходит окончательное разрушение МПТ.

Разрушение трубы происходит с образованием продольной трещины. Визуальный осмотр внутренней поверхности разрушенной трубы показал, что она имеет форму многогранника с шириной грани, равной шагу продольной арматуры, т.е. имеет место ярко выраженная деформация смятия полиэтиленовой
матрицы.

Для исследования напряжений в зоне контакта арматуры с полиэтиленом было использовано решение контактной задачи Герца.

Максимальное давление в зоне контакта определяется по формуле:

,

где R1 и R2 – радиусы кривизны контактирующих тел; R1 =5,9 см; R2 = 0,15 см;

,

где Е1 и Е2 – модули упругости; Е1 = 800 МПа; Е2 = 2,1*105 МПа;

v1 и v2 – коэффициенты Пуассона; v1 = 0,4; v2 = 0,3;

,

где g – интенсивность погонной нагрузки; p – внутреннее давление в трубе; Δ – шаг арматуры (Δ = 6 мм).

При внутреннем давлении 12 МПа получили Рmax = 118,8 МПа.

Главные напряжения в зоне контакта:

Эквивалентные напряжения по Мизесу:

Для полиэтилена низкого давления предел текучести равен 20 МПа. Полученный уровень напряжений говорит о том, что в зоне контакта происходит ме­стная пластическая деформация, результатом которой становится смятие полиэтиленовой оболочки. При внутреннем давлении р = 4 МПa σэкв = 13,7 MПa.

Контактная задача Герца описывает напряжения на границе “полиэтилен-сталь” приблизительно, так как, в данном случае, непосредственно рассматривалась только зона контакта двух элементов (полиэтиленового и стального) без учета роботы соседних элементов.

Поэтому для анализа напряженно-деформированного состояния в зонах контакта стальной арматуры с полиэтиленом была смоделирована другая сетка конечных элементов (рис. 31 и 32). Для достижения большей точности реше­ния в зонах контакта использована более мелкая сетка. Задача решалась в пло­ской постановке.

Были рассмотрены два сечения металлопластовой трубы. Сечение 1 про­ходит между двумя смежными проволоками окружной арматуры. Сечение 2 включает в себя окружную и продольную арматуру. Рассматривалась металлопластовая труба наружного диаметра 95 мм под действием внутреннего давле­ния 4.0 МПа. Был рассмотрен фрагмент трубы, включающий в себя 5 проволок продольной арматуры (d = 2.5 мм). В силу симметрии относительно вертикаль­ной оси сеткa КЭ формировалась для половины фрагмента. Для узлов, лежащих на оси симметрии, горизонтальные перемещения принимались равными кулю.

Распределение эквивалентных напряжений Мизеса 1 и 2 показано на рис. 33 и 34. Для сечения 1 напряжения в полиэтилене в окрестности узла 258 не превышают 5 МПа. Для сечения 2 в узде 258 напряжение равно 5.07 МПа. Такой уровень напряжений обеспечивает четырехкратный запас кратковременной прочности.

Как указывалось выше, наиболее наряженным элементом конструкции оказалась арматура в окружном направлении. Шаг Δ1 армирующей сетки в окружном направлении несущественно влияет на напряженно-деформированное состояние трубы и может задаваться из конструктивных соображений.

Наиболее существенное влияние оказывает шаг Δ2 арматуры в продольном
направлении. Для трубы диаметром 95 мм изменение шага сетки в продольном
направлении с 8 до 6 мм привело к понижению растягивающих напряжений в
кольцевой арматуре примерно на 20 %.

В процессе изготовления МПТ при отверждении ПНД с 70 до 20°С в трубе возникают термоупругие напряжения. В арматуре термоупругие напряжения – сжимающие, в полиэтиленовой матрице – растягивающие. От действия внутреннего давления и в арматуре и в полиэтиленовой матрице возникают растягивающие напряжения. Таким образом, наличие термоупругих напряжений разгружает арматуру и повышает суммарные напряжения в полиэтилене. С це­лью снижения уровня напряжений в полимерной матрице и повышения работоспособности труб целесообразно в технологию изготовления внесли операцию термообработки тела трубы.

Результаты испытания на растяжение элементов сварного проволочного каркаса металлопластовой трубы из малоуглеродистой конструкционной стали показали уровень предела текучести σт = 310 МПа. Сопоставление с напряжениями в стальной арматуре (табл. 111) показывает, что для труб диаметром 89 и 95 мм можно использовать проволоку диаметром 2,5 мм при размерах ячейки до 8 х 8 мм. Трубы диаметром 115 и 132 мм позволяют использовал проволоку диаметром 3 мм при размерах ячейки до 8 x 8 мм. При использовании проволоки диаметром 2,5 мм для трубы диаметром 115 мм размеры ячейки не должны превышать 6 х 6 мм, для трубы диаметром 132 мм размеры ячейки не должны превышать 6 x 6 мм.

Проведен расчет геометрических параметров полиэтиленовой законцовки металлопластовой трубы.

Определение длины законцовки из термопласта.

Расчет ведется на срез по границе "законцовка – тело трубы".

Подставив эти значения, получим:

откуда:

где h – шаг расположения продольных проволок;

δ – толщина стенки трубы.

 

Расчет длины законцовки из условия равенства прочности тела трубы на разрыв и прочности точечной сварки проволок между собой.

Подставив эти значения, получим:

По результатам расчета принимается наибольшая величина длины законцовок.

 

Определениe толщины законцовок.

Расчет ведется на смятие выступа полиэтиленовой законцовки.

Подставив значения, получим:

Решая это квадратное уравнение, получим значение толщины законцовки и ее наружного диаметра.



Информация о работе «Применение полимерно-металлических труб при сооружении промысловых газонефтепроводов»
Раздел: Промышленность, производство
Количество знаков с пробелами: 76139
Количество таблиц: 12
Количество изображений: 6

Похожие работы

Скачать
174227
21
3

... м, наружный диаметр Dн =0,96 м [2]. Расстояние между пригрузами где Qг – масса груза; Vг – объем груза; Число пригрузов Nг=L/lг=134/1,78=75,28. Принимаем количество пригрузов Nг=76 шт. 4 ДИАГНОСТИЧЕСКОЕ ОБСЛЕДОВАНИЕ И РЕМОНТ НЕФТЕПРОВОДА «КАЛТАСЫ-УФА-2» НА ПОДВОДНОМ ПЕРЕХОДЕ Р.КАЛМАШ   4.1 Водолазное обследование Перед началом производства земляных работ выполняется водолазное ...

0 комментариев


Наверх