Выбрав тип обмотки и геометрию активного слоя якоря, устанавливаю шаги обмотки якоря.
Результирующий шаг обмотки в элементарных пазах или шаг по коллектору в коллекторных делениях при простой петлевой обмотке
. (2.31)
Первый шаг в коллекторных делениях
, (2.32)
.
Второй шаг в коллекторных делениях для простой петлевой обмотки
, (2.33)
.
Укорочение обмотки в коллекторных делениях
, (2.34)
.
Полюсное деление по окружности якоря
, (2.35)
Длина передних и задних лобовых участков якорных проводников
, (2.36)
.
Длина полувитка обмотки якоря
, (2.37)
Общая длина проводников обмотки якоря
. (2.38)
Сопротивление обмотки якоря при 20˚С
, (2.39)
Масса меди обмотки якоря
, (2.40)
Ток, протекающий через щетку, находим по формуле
, (3.1)
Определим требуемую площадь щеточного контакта одного щеткодержателя
, (3.2)
где jщ – плотность тока под щеткой.
Допустимую плотность тока назначаем по выбранной марке щеток, согласно[1]. Выбираю марку ЭГ51.
Принимаю jщ =12 А/см2.
Максимально-допустимая ширина щетки
, (3.3)
По ГОСТ 8611-57, согласно [1], выбираю ширину щетки и принимаю ее равной мм.
Далее рассчитываю длину щеточного контакта
, (3.4)
Принимаю nщ = 1 – число элементарных щеток по длине коллектора.
, (3.5)
Ориентируясь по ГОСТ 8611-57, согласно[1], выбираю составной тип конструкции щеток и принимаю длину одной щетки lщ = 40 мм.
Окончательная величина площади щетки Sщ
, (3.6)
Тогда точное значение плотности тока под щеткой
, (3.7)
Рабочую длину коллектора находим по формуле
, (3.8)
где bрб – осевой разбег якорных подшипников. bрб = 10 мм;
∆щд – толщина разделяющей стенки окна щеткодержателя. ∆щд = 5 мм;
r – размер фасок краев рабочей поверхности коллектора. r = 2мм.
Достаточность длины рабочей части коллектора по нагреву можно оценить по эмпирической формуле
, (3.9)
Далее определяю удельные и поверхностные потери на коллекторе от трения щеток по выражению
, (3.10)
где fтр – коэффициент трения щеток о коллектор. fтр = 0,23;
pщ – удельное давление на щетку. Согласно [1], pщ =20 кПа;
Vku – окружная скорость коллектора при режиме испытательной
частоты вращения. Vku=1,35 · Vkmax= 1,35 · 47,35 = 63,92 м/с;
– суммарная площадь всех щеток на коллекторе.
= 2 р · Sщ · 100= 2 · 10 ·100= 2000 мм2;
– толщина межламельной изоляции. Принимаю
.
Из расчета видно, что удельные потери мощности на коллекторе не превышают допустимые, которые составляют 40…50 кВт/м2, значит рассчитанный щеточно-коллекторный аппарат, будет функционировать без опасности перегрева.
... 5,75, а Z = 100 и z = 17. Централь передачи определяется по следующей формуле: (27) Подставляя численные значения, получаем: 1.7 Определение габаритных размеров Длина тягового электродвигателя ограничивается расстоянием между внутренними гранями колесных пар, которое для железных дорог равно 1,44 м. Однако здесь же ...
... превышения температур обмоток . Должно выполниться условие: ; (9.5) 49.60<140 – условие действительно выполняется. Вывод: тяговые двигатели данного локомотива с массой поезда Q=4900 т на участке длиной 19.88 км не перегреваются.10. Расчёт расхода топлива тепловозами на тягу поездов Затраты на электроэнергию или топливо являются ...
... аварийного режима к.з. 1.2 Структурная схема тяговой подстанции Долбина В данном дипломном проекте предлагается рассмотреть модернизацию тяговой промежуточной подстанции с питающим напряжением 110 кВ. В Белгородской дистанции электроснабжения имеется 9 тяговых подстанций постоянного тока, 8 из которых питаются от ЛЭП-110 кВ, в том числе и тяговая подстанция «Долбина». Тяговая подстанция ...
... 5 V 0 5 10 15 20 25 yк 0,30 0,272 0,251 0,236 0,223 0,213 Fк.сц 432,6 392,2 361,9 340 321,6 307,2 4.4 Построение тягово-энергетических характеристик тепловоза 2ТЭ121 На основании сводной таблицы (табл.3), полученной на основании расчётов на ПЭВМ в Math Cad строится тяговая характеристика тепловоза (рис.3). Тяговая характеристика тепловоза включает: 1) линии ...
0 комментариев