1 РАСЧЕТ ПАРАМЕТРОВ ТЕПЛОВОЗА И ЭЛЕКТРИЧЕСКОЙ ПЕРЕДАЧИ
1.1 Выбор расчетных сил тяги и скорости тепловоза
1.2 Выбор типа электрической передачи и схемы соединения ТЭД
1.3 Определение основных расчетных параметров электрических машин
1.4 Определение основных размеров ТЭД
1.5 Определение главных размеров синхронного генератора
1.6 Определение параметров зубчатой передачи
1.7 Определение габаритных размеров
2 ЭЛЕКТРОМАГНИТНЫЙ РАСЧЕТ ТЭД
2.1 Выбор типа обмотки
2.2 Расчет числа пазов, параметров обмотки якоря
2.3 Расчет коллекторно-щеточного узла
2.4 Разборка эскиза магнитной цепи
2.5 Расчет магнитных напряжений участков магнитной цепи
2.6 Расчет главных полюсов, коммутации и добавочных полюсов
2.7 Определение к.п.д. при длительном режиме работы
3 РАСЧЕТ И ПОСТРОЕНИЕ ХАРАКТЕРИСТИК ТЭД, СГ И ТЕПЛОВОЗА
3.1 Внешняя характеристика генератора
3.2 Характеристика намагничивания
3.3 Электромеханические характеристики ТЭД
3.4 Разгонные характеристики ТЭД
3.5. Тяговая характеристика тепловоза
4 РАСЧЕТ ТЕХНИКО-ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ ТЭД И СГ
ЛИТЕРАТУРА
1.1 Выбор расчетных сил тяги и скорости тепловоза
Длительная сила тяги и скорость определяют массу поезда и среднюю техническую скорость локомотива, а в конечном итоге, его производительность, поэтому нахождение оптимальных значений этих величин является одной из важнейших задач.
Длительная сила тяги тепловоза определяется по формуле:
(1)
где Nдг. – свободная мощность тепловоза, передаваемая генератору, рассчи-
тывается по формуле:
Nдг. = Ne – Nвсп., (2)
Nвсп. – мощность, расходуемая на привод вспомогательных агрегатов
тепловоза, определяется по формуле:
Nвсп. = (0,08…0,15)Ne, (3)
Подставляя численные значения, получаем:
Nвсп. = 0,1×2940 = 294 кВт.
Тогда подставляя численные значения в (2), получаем:
Nдг = 2940 – 294 = 2646 кВт.
hп – к.п.д. электрической передачи, определяется по формуле:
hп = hг×hтд×hзп, (4)
hг, hтд, hзп – к.п.д. соответственно генератора, тягового электро-
двигателей, зубчатой передачи, принимаем hг = 0,95,
hтд = 0,93, hзп = 0,985.
Подставляя численные данные, получаем:
hп = 0,95×0,93×0,985 = 0,87.
uдл – длительная скорость тепловоза, uдл = 30 км/ч.
Тогда подставляя численные значения в (1), получаем:
Определим коэффициент тяги на расчетном подъеме по следующей формуле:
(5)
Подставляя численные значения, получаем:
Полученный коэффициент тяги входит в рекомендуемый предел значения коэффициента тяги для грузового тепловоза.
1.2 Выбор типа электрической передачи и схемы соединения ТЭД
Предельная мощность тепловозного генератора постоянного тока определяется из условий удовлетворительной коммутации критерием Касьянова, который соответствует выражению:
Рг×nд <=2×106, (6)
где Рг – мощность генератора, которую можно рассчитать по формуле:
Рг = Nдг×hд, (7)
Подставляя численные значения, получаем:
Рг = 2646×0,95 = 2514 кВт.
Тогда подставляя численные значения в (6), получаем:
2514×1100 = 2765400 > 2×106.
Так как критерий Касьянова не выполняется, то выбираем передачу переменно-постоянного тока.Схема соединения электродвигателей выбирается таким образом, чтобы обеспечить необходимые тяговые свойства тепловоза. На выбор электрической схемы соединений ТЭД оказывает влияние максимальная скорость тепловоза , при которой должна использоваться полная мощность силовой установки. Скорость максимального использования мощности для грузовых тепловозов принимается . При выборе схемы соединения ТЭД необходимо последовательно исследовать возможность применения различных вариантов в порядке возрастания их сложности. Критерием применимости той или иной схемы является величина скорости полного использования мощности силовой установки тепловоза. Если схема обеспечивает достижение тепловозом скорости , равной или большой заданной, то она может быть применена. В противном случае необходимо исследовать следующий по сложности вариант. Таким образом, задача сводиться в определении скорости .
Для начала рассчитаем постоянную схему соединений ТЭД с ослаблением поля:
Максимальную скорость полного использования мощности тепловоза в этом случаем, определим по формуле:
(8)
где a - коэффициент ослабления возбуждения;
К2г.дл – коэффициент регулирования генератора;
Кгоп – степень насыщения магнитной системы электродвигателей при
длительном режиме по сравнению с режимом ослабленного поля
при скорости .
Задаваясь коэффициентом ослабления a = 0,28 и выбирая две ступени ослабления, определяем коэффициент Кг.дл =1,4.
Степень насыщения определяем с помощью кривой намагничивания:
Кгоп = АС/АЕ=1,8.
Тогда подставляя численные данные в (8), получаем:
Так как скорость , то, следовательно, эта схема соединения ТЭД нам подходит. Значит, мы выбираем схему соединения ТЭД с ослабленным полем.... колеса , (1.12) где y – угол наклона зубьев при прямозубой передаче. Принимаю y = 0о; m – модуль зубчатого зацепления, принимаемый в зависимости от вращающего момента М и конструкции тяговой передачи. , (1.13) По эмпирическим формулам для прямозубых передач (1.14) где К – односторонняя передача. Принимаю К = 1, согласно [1]. Принимаем m = 10. Число зубьев ...
... . В режиме минимума предполагается, что напряжение источника питания повышается до максимального значения сети. Таблица 5. Расчет токов короткого замыкания тяговой подстанции Наименование Значение Обозначения и расчетные формулы параметры трансформатора Заводской допуск напряжения кз 0,05 Δuk Напряжение опыта кз, приходящееся на обмотку, % 10,75 uk,B=0,5 (uk,BH +uk,BC ...
... 60-х г. тепловозы заменили паровозную тягу на главных направлениях степных районов Украины, России, Казахстана и Сибири, а также в Средней Азии. I. Выбор основных параметров силовой установки и вспомогательного оборудования локомотива 1.1 Выбор основных параметров силовой установки Касательная сила тяги определяется из условия равномерного движения поезда с расчетной скоростью (Vр) на ...
... ЭД-118А. На выходах шеек напрессовывают лабиринтные кольца уплотнения циркуляционной системы смазки. 3. Выбор оборудования и его компоновка на тепловозе Для определения весогабаритных характеристик основных узлов и оборудования следует ориентироваться на аналогичные параметры тепловоза прототипа. Для выполнения развески используется схема расположения узлов и оборудования (рис. 11). Развеска ...
0 комментариев