ЗАДАНИЕ
Спроектировать привод.
В состав привода входят следующие передачи:
1 - ременная передача с клиновым ремнём;
2 - закрытая зубчатая цилиндрическая передача.
Мощность на выходном валу Р = 8 кВт.
Частота вращения выходного вала n = 80 об./мин.
Содержание
Введение.......................................................................................................
1. Выбор электродвигателя и кинематический расчёт
2. Расчёт 1-й клиноременной передачи
3. Расчёт 2-й зубчатой цилиндрической передачи
3.1 Проектный расчёт
3.2 Проверочный расчёт по контактным напряжениям
3.3 Проверка зубьев передачи на изгиб
4. Предварительный расчёт валов
4.1 Ведущий вал.
4.2 Выходной вал.
5. Конструктивные размеры шестерен и колёс
5.1 Ведущий шкив 1-й ременной передачи
5.2 Ведомый шкив 1-й ременной передачи
5.3 Цилиндрическая шестерня 2-й передачи
5.4 Цилиндрическое колесо 2-й передачи
6. Выбор муфты на выходном валу привода
7. Проверка прочности шпоночных соединений
7.1 Ведущий шкив 1-й клиноременной передачи
7.2 Ведомый шкив 1-й клиноременной передачи
7.3 Шестерня 2-й зубчатой цилиндрической передачи
7.4 Колесо 2-й зубчатой цилиндрической передачи
8. Конструктивные размеры корпуса редуктора
9. Расчёт реакций в опорах
9.1 1-й вал
9.2 2-й вал
10. Построение эпюр моментов валов
10.1 Расчёт моментов 1-го вала
10.2 Эпюры моментов 1-го вала
10.3 Расчёт моментов 2-го вала
10.4 Эпюры моментов 2-го вала
11. Проверка долговечности подшипников
11.1 1-й вал
11 2-й вал
12. Уточненный расчёт валов
12.1 Расчёт 1-го вала
12.2 Расчёт 2-го вала
13. Тепловой расчёт редуктора
14. Выбор сорта масла
15. Выбор посадок
16. Технология сборки редуктора
Заключение
Список использованной литературы
Введение
Инженер-конструктор является творцом новой техники, и уровнем его творческой работы в большей степени определяются темпы научно-технического прогресса. Деятельность конструктора принадлежит к числу наиболее сложных проявлений человеческого разума. Решающая роль успеха при создании новой техники определяется тем, что заложено на чертеже конструктора. С развитием науки и техники проблемные вопросы решаются с учетом все возрастающего числа факторов, базирующихся на данных различных наук. При выполнении проекта используются математические модели, базирующиеся на теоретических и экспериментальных исследованиях, относящихся к объемной и контактной прочности, материаловедению, теплотехнике, гидравлике, теории упругости, строительной механике. Широко используются сведения из курсов сопротивления материалов, теоретической механики, машиностроительного черчения и т. д. Все это способствует развитию самостоятельности и творческого подхода к поставленным проблемам.
При выборе типа редуктора для привода рабочего органа (устройства) необходимо учитывать множество факторов, важнейшими из которых являются: значение и характер изменения нагрузки, требуемая долговечность, надежность, КПД, масса и габаритные размеры, требования к уровню шума, стоимость изделия, эксплуатационные расходы.
Из всех видов передач зубчатые передачи имеют наименьшие габариты, массу, стоимость и потери на трение. Коэффициент потерь одной зубчатой пары при тщательном выполнении и надлежащей смазке не превышает обычно 0,01. Зубчатые передачи в сравнении с другими механическими передачами обладают большой надежностью в работе, постоянством передаточного отношения из-за отсутствия проскальзывания, возможностью применения в широком диапазоне скоростей и передаточных отношений. Эти свойства обеспечили большое распространение зубчатых передач; они применяются для мощностей, начиная от ничтожно малых (в приборах) до измеряемых десятками тысяч киловатт.
К недостаткам зубчатых передач могут быть отнесены требования высокой точности изготовления и шум при работе со значительными скоростями.
Косозубые колеса применяют для ответственных передач при средних и высоких скоростях. Объем их применения - свыше 30% объема применения всех цилиндрических колес в машинах; и этот процент непрерывно возрастает. Косозубые колеса с твердыми поверхностями зубьев требуют повышенной защиты от загрязнений во избежание неравномерного износа по длине контактных линий и опасности выкрашивания.
Одной из целей выполненного проекта является развитие инженерного мышления, в том числе умение использовать предшествующий опыт, моделировать используя аналоги. Для курсового проекта предпочтительны объекты, которые не только хорошо распространены и имеют большое практическое значение, но и не подвержены в обозримом будущем моральному старению.
Существуют различные типы механических передач: цилиндрические и конические, с прямыми зубьями и косозубые, гипоидные, червячные, глобоидные, одно- и многопоточные и т. д. Это рождает вопрос о выборе наиболее рационального варианта передачи. При выборе типа передачи руководствуются показателями, среди которых основными являются КПД, габаритные размеры, масса, плавность работы и вибронагруженность, технологические требования, предпочитаемое количество изделий.
При выборе типов передач, вида зацепления, механических характеристик материалов необходимо учитывать, что затраты на материалы составляют значительную часть стоимости изделия: в редукторах общего назначения - 85%, в дорожных машинах - 75%, в автомобилях - 10% и т. д.
Поиск путей снижения массы проектируемых объектов является важнейшей предпосылкой дальнейшего прогресса, необходимым условием сбережения природных ресурсов. Большая часть вырабатываемой в настоящее время энергии приходится на механические передачи, поэтому их КПД в известной степени определяет эксплуатационные расходы.
Наиболее полно требования снижения массы и габаритных размеров удовлетворяет привод с использованием электродвигателя и редуктора с внешним зацеплением.
По табл. 1.1[1] примем следующие значения КПД:
- для ременной передачи с клиновым ремнем: 1 = 0,96
- для закрытой зубчатой цилиндрической передачи: 2 = 0,975
Общий КПД привода будет:
= 1 x ... x n x подш.2 x муфты
= 0,96 x 0,975 x 0,992 x 0,98 = 0,899
где подш. = 0,99 - КПД одного подшипника.
муфты = 0,98 - КПД муфты.
Угловая скорость на выходном валу будет:
вых. = x nвых. / 30 = 3,142 x 80 / 30 = 8,378 рад/с
Требуемая мощность двигателя будет:
Pтреб. = Pвых. / = 8 / 0,899 = 8,899 кВт
В таблице П.1[1](см. приложение) по требуемой мощности выбираем электродвигатель 160M8, с синхронной частотой вращения 750 об/мин, с параметрами: Pдвиг.=11 кВт и скольжением 2,5% (ГОСТ 19523-81). Номинальная частота вращения nдвиг. = 750-750x2,5/100=731,25 об/мин,угловая скорость двиг. = x nдвиг. / 30 = 3,14 x 731,25 / 30 = 76,576 рад/с.
Oбщее передаточное отношение:
U = вход. / вых. = 76,576 / 8,378 = 9,14
Для передач выбрали следующие передаточные числа:
U1 = 1,6
U2 = 5,6
Рассчитанные частоты и угловые скорости вращения валов сведены ниже в таблицу :
Вал 1-й | n1 = nдвиг. / U1 = 731,25 / 1,6 = 457,031 об./мин. | 1 = двиг. / U1 = 76,576 / 1,6 = 47,86 рад/c. |
Вал 2-й | n2 = n1 / U2 = 457,031 / 5,6 = 81,613 об./мин. | 2 = 1 / U2 = 47,86 / 5,6 = 8,546 рад/c. |
Мощности на валах:
P1 = Pтреб. x 1 x подш. = 8899 x 0,96 x 0,99 = 8457,61 Вт
P2 = P1 x 2 x подш. = 8457,61 x 0,975 x 0,99 = 8163,708 Вт
Вращающие моменты на валах:
T1 = P1 / 1 = (8457,61 x 103) / 47,86 = 176715,629 Нxмм
T2 = P2 / 2 = (8163,708 x 103) / 8,546 = 955266,557 Нxмм
По таблице П.1(см. приложение учебника Чернавского) выбран электродвигатель 160M8, с синхронной частотой вращения 750 об/мин, с мощностью Pдвиг.=11 кВт и скольжением 2,5% (ГОСТ 19523-81). Номинальная частота вращения с учётом скольжения nдвиг. = 731,25 об/мин.
Передаточные числа и КПД передач
Передачи | Передаточное число | КПД |
1-я ременная передача с клиновым ремнём | 1,6 | 0,96 |
2-я закрытая зубчатая цилиндрическая передача | 5,6 | 0,975 |
Рассчитанные частоты, угловые скорости вращения валов и моменты на валах
Валы | Частота вращения, об/мин | Угловая скорость, рад/мин | Момент, Нxмм |
1-й вал | 457,031 | 47,86 | 176715,629 |
2-й вал | 81,613 | 8,546 | 955266,557 |
1. Вращающий момент на меньшем ведущем шкиве:
T(ведущий шкив) = 116211,346 Нxмм.
2. По номограмме на рис. 7.3[1] в зависимости от частоты вращения меньшего ведущего шкива n(ведущий шкив) (в нашем случае n(ведущий шкив)=731,247 об/мин) и передаваемой мощности:
P = T(ведущий шкив) x (ведущий шкив) = 116211,346 x 10-6 x 76,576 = 8,899 кВт
принимаем сечение клинового ремня А.
3. Диаметр меньшего шкива по формуле 7.25[1]:
d1 = (3...4) x T(ведущий шкив)1/3 = (3...4) x 116211,3461/3 = 146,399...195,198 мм.
Согласно табл. 7.8[1] принимаем d1 = 160 мм.
4. Диаметр большого шкива (см. формулу 7.3[1]):
d2 = U x d1 x (1 - ) = 1,6 x 160 x (1 - 0,015) = 252,16 мм.
где = 0,015 - относительное скольжение ремня.
Принимаем d2 = 250 мм.
5. Уточняем передаточное отношение:
Uр = d2 / (d1 x (1 - )) = 250 / (160 x (1 - 0,015)) = 1,586
При этом угловая скорость ведомого шкива будет:
(ведомый шкив) = (ведущий шкив) / Uр = 76,576 / 1,586 = 48,282 рад/с.
Расхождение с требуемым (47,86-48,282)/47,86=-0,882%, что менее допускаемого: 3%.
Следовательно, окончательно принимаем диаметры шкивов:
d1 = 160 мм;
d2 = 250 мм.
6. Межосевое расстояние Ap следует принять в интервале (см. формулу 7.26[1]):
amin = 0.55 x (d1 + d2) + T0 = 0.55 x (160 + 250) + 6 = 231,5 мм;
amax = d1 + d2 = 160 + 250 = 410 мм.
где T0 = 6 мм (высота сечения ремня).
Принимаем предварительно значение a = 797 мм.
7. Расчетная длина ремня по формуле 7.7[1]:
L = 2 x a + 0.5 x x (d1 + d2) + (d2 - d1)2 / (4 x a) =
2 x 797 + 0.5 x 3,142 x (160 + 250) + (250 - 160)2 / (4 x 797) =
2240,567 мм.
Выбираем значение по стандарту (см. табл. 7.7[1]) 2240 мм.
8. Уточнённое значение межосевого расстояния aр с учетом стандартной длины ремня L (см. формулу 7.27[1]):
aр = 0.25 x ((L - w) + ((L - w)2 - 2 x y)1/2)
где w = 0.5 x x (d1 + d2) = 0.5 x 3,142 x (160 + 250) = 644,026 мм;
y = (d2 - d1)2 = (250 - 160)2 = 8100 мм.
Тогда:
aр = 0.25 x ((2240 - 644,026) +EQ \R(;(2240 - 644,026)2 - 2 x 8100) ) = 796,716 мм,
При монтаже передачи необходимо обеспечить возможность уменьшения межосевого расстояния на 0,01 x L = 22,4 мм для облегчения надевания ремней на шкивы и возможность увеличения его на 0,025 x L = 56 мм для увеличения натяжения ремней.
9. Угол обхвата меньшего шкива по формуле 7.28[1]:
1 = 180o - 57 x (d2 - d1) / aр = 180o - 57 x (250 - 160) / aр = 173,561o
10. Коэффициент режима работы, учитывающий условия эксплуатации передачи, по табл. 7.10[1]: Cp = 1,1.
11. Коэффициент, учитывающий влияние длины ремня по табл. 7.9[1]: CL = 1,06.
12. Коэффициент, учитывающий влияние угла обхвата (см. пояснения к формуле 7.29[1]): C = 0,984.
13. Коэффициент, учитывающий число ремней в передаче (см. пояснения к формуле 7.29[1]): предполагая, что ремней в передаче будет от 4 до 6, примем коэффициент Сz = 0,85.
14. Число ремней в передаче:
z = P x Cp / (PoCL x C x Cz) = 8899 x 1,1 / (1870 x 1,06 x 0,984 x 0,85 = 5,904,
где Рo = 1,87 кВт - мощность, передаваемая одним клиновым ремнем, кВт (см. табл. 7.8[1]).
Принимаем z = 6.
15. Скорость:
V = 0.5 x (ведущего шкива) x d1 = 0.5 x 76,576 x 0,16 = 6,126 м/c.
16. Нажатие ветви клинового ремня по формуле 7.30[1]:
F0 = 850 x P x Cр x CL / (z x V x C) + x V2 =
850 x 8,899 x 1,1 x 1,06 / (6 x 6,126 x 0,984) + 0,1 x 6,1262 = 247,61 H.
где = 0,1 Hxc2/м2 - коэффициент, учитывающий влияние центробежных сил (см. пояснения к формуле 7.30[1]).
17. Давление на валы находим по формуле 7.31[1]:
Fв = 2 x F0 x sin(/2) = 2 x 247,61 x 6 x sin(173,561o/2) = 2966,63 H.
18. Ширина шкивов Вш (см. табл. 7.12[1]):
Вш = (z - 1) x e + 2 x f = (6 - 1) x 15 + 2 x 10 = 95 мм.
Параметры клиноременной передачи, мм
Параметр | Значение | Параметр | Значение |
Тип ремня | клиновой | Диаметр ведущего шкива d1 | 160 |
Сечение ремня | А | Диаметр ведомого шкива d2 | 250 |
Количество ремней Z | 6 | Максимальное напряжение max, H/мм2 | 4,848 |
Межосевое расстояние aw | 796,716 | ||
Длина ремня l | 2240 | Предварительное натяжение ремня Fo, Н | 247,61 |
Угол обхвата ведущего шкива 1, град | 173,561 | Сила давления ремня на вал Fв, Н | 2966,63 |
Так как в задании нет особых требований в отношении габаритов передачи, выбираем материалы со средними механическими характеристиками (см. гл.3, табл. 3.3[1]):
- для шестерни : сталь : 45
термическая обработка : улучшение
твердость : HB 230
- для колеса : сталь : 45
термическая обработка : улучшение
твердость : HB 200
Допустимые контактные напряжения (формула (3.9)[1]) , будут:
[H] = H lim b x KHL / [SH]
По таблице 3.2 гл. 3[1] имеем для сталей с твердостью поверхностей зубьев менее HB 350 :
H lim b = 2 x HB + 70 .
H lim b (шестерня) = 2 x 230 + 70 = 530 МПа;
H lim b (колесо) = 2 x 200 + 70 = 470 МПа;
KHL - коэффициент долговечности; при числе циклов нагружения больше базового, что имеет место при длительной эксплуатации редуктора принимаем KHL = 1 ; коэффициент безопасности [Sh]=1,1.
Допустимые контактные напряжения:
для шестерни [ H1 ] = 530 x 1 / 1,1 = 481,818 МПа;
для колеса [ H2 ] = 470 x 1 / 1,1 = 427,273 МПа.
Для прямозубых колес за расчетное напряжение принимается минимальное допустимое контактное напряжение шестерни или колеса.
Тогда расчетное допускаемое контактное напряжение будет:
[ H ] = [ H2 ] = 427,273 МПа.
Принимаем коэффициент симметричности расположения колес относительно опор по таблице 3.5[1] : KHb = 1,15 .
Коэффициент ширины венца по межосевому расстоянию принимаем:
ba = b / aw = 0,2 , (см. стр.36[1]).
Межосевое расстояние из условия контактной выносливости активных поверхностей зубьев найдем по формуле 3.7 гл. 3[1]:
aw = Ka x (U + 1) x (T2 x KHb / [ H ] 2 x U2 x ba ) 1/3 =
... Uред.ст = 5,6. Уточним полученное значение передаточного отношения клиноременной передачи: Uкл.рем.ст. = Uпр / Uред.ст. = 10,8 / 5,6 = 1,93 Определим значения мощности на каждом из валов привода конвейера. Мощность на выходном валу электродвигателя (кВт) определяется по формуле (9). Ртреб.эл. = Ррем1 = 8,87 кВт (9) Мощность на входном валу ...
... *0,72*0,992=3,764 кВт; Р4=Р3 η3=5,124*0,95=3,576 кВт, что близко к заданному. Определяем вращающие моменты на каждом валу привода по формуле (Нм) (2.5) ; ; ; . Все рассчитанные параметры сводим в табл.1. Таблица 1 Параметры кинематического расчета № вала n, об/мин ω, рад/с Р, кВт Т, Нм U Дв. (1) 1444,5 151,27 5,5 36,35 2 ...
... 10 с, мм 0,5 d,мм 90,5 409,5 dа,мм 98,5 422,5 df,мм 80,5 399,6 b, мм 80 62 ω, рад 18,2 4 аW,мм 250 v, м/с 0,8 Т, Нм 388 1964 Ft, Н 9593 Fr, Н 4938 4. Расчет валов редуктора По кинематической схеме привода составляем схему усилий, действующих на валы редуктора. Для этого мысленно расцепим шестерню и колесо редуктора. По закону равенства ...
... с.203] назначаем 8 – ю степень точности. Эскизная компоновка и предварительные размеры. После определения размеров основных деталей выполним эскизную компоновку редуктора. Червяк и червячное колесо располагаем симметрично относительно опор и определяем соответствующие длины. ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; . По рекомендации [№1 с.380] : 1) принимаем диаметр вала под уплотнения для подшипников ...
0 комментариев