1. Повышение толщины стенки всей оболочки аппарата.
2. Повышение толщины оболочки только в некоторой зоне, расположенной вокруг отверстия. Последний способ более целесообразен, так как требует меньших затрат металла. Нормы и методы расчета на прочность, укрепление отверстий установлены ГОСТ 24755–81.
В данном случае для укрепления отверстий используем укрепляющие кольца.
Рис. 5.5. Отверстие, укрепленное с помощью кольца.
В этой схеме (на рис. 5.4) толщина укрепляющего кольца примерно равна толщине оболочки. Кольцо имеет сигнальное отверстие резьбой М10, которое предназначено для испытания сварочных швов на плотность. В это отверстие с резьбой при испытании подводится воздух давлением 0,6 МПа.
Прежде чем укреплять отверстие, нужно убедится в необходимости этой операции, для этого предварительно вычисляем наибольший диаметр одиночного отверстия в цилиндрическом корпусе, не требующего дополнительного укрепления.
где S - исполнительная толщина укрепляемого элемента, мм;
Sр=S - c-расчетная толщина оболочки, мм;
DR- расчетный диаметр оболочки, для оболочки DR=Dв,
c2 - прибавка на коррозию;
Для обечайки:
мм
Если , то отверстия можно не уплотнять.
Если диаметр штуцера больше предельного диаметра отверстия, то такое отверстие должно быть укреплено. Условие достаточности укрепления отверстий за счет толщины стенки штуцера определяется по формуле:
,
где Sp-расчетная толщина оболочки;
dв.шт. -внутренний диаметр штуцера, мм;
– длина штуцера, мм;
– расчетная толщина стенки штуцера, мм;
-исполнительная толщина стенки штуцера, мм;
c2 - прибавка на коррозию, мм;
c3 - прибавка для округления расчетной толщины штуцера до размера по сортаменту, мм;
В случае выполнения этого неравенства отверстие не требует укрепления дополнительными элементами.
Из расчетов следует, что отверстия нужно укреплять.
Диаметр укрепляющего кольца находится по формуле:
,
где dн.шт. - наружный диаметр штуцера, м;
Рассчитаем диаметр укрепляющего кольца для патрубков конденсата пара:
м.
Действительную толщину укрепляющего кольца определяют из неравенства:
,
где SK-толщина укрепляющего кольца, мм;
DK-наружный диаметр кольца, мм;
d – диаметр укрепляемого отверстия, мм;
S-исполнительная толщина оболочки (обечайки), мм;
d0пред- предельный допускаемый диаметр, мм;
Из этого неравенства следует:
Таким образом, для патрубков конденсата пара:
мм
Исполнительную толщину кольца принимаем 8 мм.
Рассчитаем диаметр укрепляющего кольца для патрубков воды на ХВО:
м.
Действительную толщину укрепляющего кольца определяют из неравенства:
,
где SK- толщина укрепляющего кольца, мм;
DK- наружный диаметр кольца, мм;
d – диаметр укрепляемого отверстия, мм;
S - исполнительная толщина оболочки (обечайки), мм;
d0пред- предельный допускаемый диаметр, мм;
Из этого неравенства следует:
Таким образом, для патрубков воды на ХВО:
мм
Исполнительную толщину кольца принимаем 8 мм.
Расчет трубной решетки
Трубная решетка (трубная доска) предназначена для прочного и плотного крепления в ней теплообменных трубок с целью разграничения пространства с греющей и нагреваемой средами, то есть разграничения трубного и межтрубного пространства. Крепление трубок в решетке и толщина трубной решетки должны удовлетворять условиям прочности и гидравлической плотности.
Толщину трубной решетки определяем:
,
где средний диаметр под прокладку,
мм
– допускаемое напряжение для материала решетки;
C=4 мм – прибавка к расчетной высоте;
коэффициент ослабления трубной решетки отверстиями под трубки;
диаметр отверстия под трубку;
м,
м.
м
Дополнительные условия проверки прочности трубной решетки.
Условие прочности безтрубной зоны:
где dE – максимальный диаметр окружности, вписанной в безтрубную зону решетки меж ду обечайкой и трубками, м; принимаем по компоновке De = 10 мм;
Рт – давление в трубном пространстве, МПа; Рт = 0,6 МПа;
Рм – давление в межтрубном пространстве, МПа; Рм = 0,4МПа;
- допускаемое напряжение для материала решетки, МПа; =154,76МПа;
м
S³0,00418 м.
Толщина трубной решетки в сечении уплотнительной канавки должна быть не менее:
где (S – С) – расчетная толщина трубной решетки, м; (S – С) = 26 мм;
tp – шаг разбивки трубной решетки tp = 31,4 мм;
tп – расстояние между ближайшими рядами труб, принимаем по компоновке tп = 62,5 мм
bп – ширина паза в трубной решетке; bn = 10 мм;
do – диаметр отверстия под трубки в трубной решетке.
φр – коэффициент прочности трубной решетки,
мм.
Минимальная толщина трубной решетки, обеспечивающая надежность вальцовки труб:
где lВ – высота вальцовки, м;
[q] – допускаемая нагрузка, приходящаяся на единицу условной поверхности развальцовки и зависящая от способа развальцовки, МПа; для развальцовки с отбортовкой [q] = 30 МПа;
NT – продольная сила, действующая в месте закрепления трубы в решетке, МН.
Так как рассчитываемый аппарат является аппаратом нежесткого типа, осевое усилие вычисляется по формуле:
Где Р=0,4 МПа – давление в межтрубном пространстве
мм
Минимальная толщина решетки под кольцевую прокладку.
,
где Dс.п. - средний диаметр прокладки, м;
допускаемое напряжение для материала решетки, МПа;
Dв - внутрений диаметр обечайки;
(м)
Условие выполняется.
Дополнительное условие:
мм
Все условия выполняются.
Расчет теплообменных трубок на прочность.
Расчетные напряжения в осевом направлении s1т, МПа, в трубах составляют:
,
где ST – толщина стенки трубки, м.
.
Расчетные напряжения в окружном направлении s2т, МПа, в трубах составляют:
,
.
Условие статической прочности труб:
,
где [s]Т – допускаемое напряжение для материала трубки, МПа, принимаем [s]Т=230 МПа.
.
Таким образом, условие статической прочности труб выполняется.
Расчет прокладочной обтюрации
Обтюрация достигается сжатием с определенной силой, обеспечивающей герметичность уплотняемых поверхностей непосредственно друг с другом или посредством расположенных между ними прокладок из более мягкого материала.
Для герметичности соединения обечайки с жидкостными крышками используем прокладки типа 1. Тип обтюрации – I-А. Обтюрация типа I-А изображена на рисунке 13.1. Расчетная сила осевого сжатия для прокладок типа I определяется по формуле:
,
где Dсп – средний диаметр прокладки, м;
P – расчетное давление среды, воздействующей на фланцевое соединение, МПа,
K – коэффициент, зависящий от материала прокладки и ее конструкции, для паронита K=2,5;
bэкв – эффективная ширина уплотнения, м
,
b – ширина прокладки, м
.
.
.
МН.
Выбор линзового компенсатора.
Рисунок 5.7. Сварной линзовый компенсатор из двух штампованных полулинз
По давлению в межтрубном пространстве и наружному диаметру выбираем линзовый компенсатор по таблице 24.1 [6]. Таблица 2. Основные размеры линзового компенсатора.
Таблица 5.4
Dу | Dн | l | l1 | D | s |
мм | |||||
800 | 805 | 140 | 70 | 955 | 2,5 |
По конструктивным соображениям число линз принимаем
Расчет опор.
Установка аппаратов на фундаменты или на специальные несущие конструкции осуществляется в основном посредством опор. Непосредственно на фундаменты устанавливаются аппараты с плоским днищем. Опоры могут размещать или снизу аппарата или с боков и они жестко соединяются с аппаратом. Выбор типа опоры зависит от места установки теплообменного аппарата (в помещение или вне его), соотношения высоты к диаметру и массы аппарата.
Выбираем горизонтальную опору, так как аппарат располагается горизонтально. Чтобы избежать вмятин на стенках теплообменного аппарата и распределить усилие на большую часть площади обечайки под опорами располагаем подкладки, приваренные к обечайке.
Максимальное усилие Gmax определяется по формуле:
Для расчета составляющих, входящих в формулу используем известное соотношение для i-го элемента:
где Vi – объем i-го элемента, м3
ρi – плотность материала элемента, кг/м3
Для стали: ρст=7850 кг/м3
Для воды: ρв=1000 кг/м3
Для латуни: ρл=8430 кг/м3
Усилие от обечайки Go определяем по следующей формуле:
где Dн – наружный диаметр обечайки, м
Dвн – внутренний диаметр обечайки, м
l – длина обечайки, м
g=9,81 м2/с
Dн=0,816 м
Dвн=0,8 м
l=3,7 м
Усилие, действующее на опору со стороны цилиндрических частей днищ:
где lц – высота цилиндрической части днища, м
конструктивно принимаем lц=0,2 м
Усилие от эллиптических днищ:
где mдн – масса днища, кг
по таблице 16.2 [6] принимаем стандартную массу днища mдн=49 кг
Усилие, действующее на опоры со стороны трубных решеток:
где Dн.р. – наружный диаметр трубной решетки, м
h – высота трубной решетки, м
dн – наружный диаметр трубки в аппарате, м
Dн.р.=0,816 м
h=0,03 м
dн=0,024 м
Усилие от фланцев на обечайке:
где hф – высота фланца, м
Dф – наружный диаметр фланца, м
Dв – внутренний диаметр фланца, м
hф=0,028 м
Dф=0,93 м
Dв=0,8 м
Усилия, действующие со стороны теплообменных трубок, находятся из соотношения:
где n – количество трубок,
lт – полная длина трубки, м
ρл – плотность латуни, кг/м3
dн – наружный диаметр трубки, м
dвн – внутренний диаметр трубки, м
Усилие, действующее со стороны патрубков греющего теплоносителя:
где lп.г. – вылет патрубков греющего теплоносителя, м
Dн – наружный диаметр патрубка, м
Dвн – внутренний диаметр патрубка, м
Усилие, действующее со стороны патрубков греющего теплоносителя:
где lп.г. – вылет патрубков нагреваемого теплоносителя, м
Dн – наружный диаметр патрубка, м
Dвн – внутренний диаметр патрубка, м
Усилие, действующее со стороны дополнительной цилиндрической части рассчитаем аналогично обечайке:
Усилие фланцев для патрубков:
Усилие, действующее на опоры со стороны фланцев для патрубков конденсата пара: так как их два, то
Н.
Усилие, действующее на опоры со стороны фланцев для патрубков воды на ХВО: так как их два, то
Н.
Усилие, действующее на опоры со стороны компенсирующей линзы
Н
Усилие, действующее на опоры со стороны всего аппарата:
Усилие, действующее со стороны воды, заполняющей весь аппарат:
Объем обечайки находится по формуле:
Емкость днищ определяется по формуле:
где h – высота цилиндрической части днища, м
V* – емкость эллиптического днища, м3
h=0,02 м
V* =0,0796 м3
Объем цилиндрической камеры обечайки находится по формуле:
Суммарный объем воды в аппарате:
Вес воды, заполняющей аппарат:
Определяем усилие, действующее на опору со стороны всего аппарата, заполненного водой:
Количество опор составляет обычно от двух до четырех и нагрузка приходящаяся на одну опору равна:
где n – количество опор
Принимаем количество опор в аппарате равным п=2.
В качестве материала лапы назначаем ВСт3
В зависимости от величины нагрузки G по табличным данным выбираем стандартную опорную лапу.
Ориентируясь на таблицу 14.6 [7] принимаем опору по ГОСТ 26–1265–75
Таблица 5.5. Базовые размеры опоры аппарата
Dн, мм | Q, кН | , мм | , мм | R, мм | L, мм | A, мм | , мм |
800 | 80 | 8 | 14 | 442 | 740 | 500 | 400 |
... ввиду сравнительно небольшого давления на входе (примерно 0,35 МПа).Принципиальная тепловая схема установки показана на рис.1. Рис. 1. Принципиальная тепловая схема турбоустановки с турбиной К-1000-60/1500-1 ПО " Турбоатом " А - питательная вода к ПГ; В - острый пар из ПГ; С - слив конденсата из конденсатора ТППН в основной конденсатор; D - конденсат от эжекторов в основной конденсатор; Е ...
... механизация и автоматизация производственных процессов; применение теплоизоляции котла и установки экранирующего кожуха для снижения температуры воздуха в помещении котельной и уменьшения теплового облучения рабочих. Производственное освещение В котельной предусматривается два вида освещения: естественное и искусственное. Освещение котельной осуществляется естественным образом, в дневное время ...
... l/d трубки. 6590 Вт/(м2К). Графически определяем при =26,81°С q=22306 Вт/м2. Коэффициент теплопередачи охладителя: Площадь поверхности теплообмена: 3.6 Анализ теплотехнических расчетов В настоящее время для очистки трапных вод с энергоблоков 1-4 на Балаковской АЭС применяются три выпарные установки: две в работе, одна в резерве. Фактические поверхности теплопередачи выпарного ...
... район: G1=97,85 кг/с = 366.94 м3/ч, выбираем и устанавливаем параллельно 2 насоса К 160/20 и один К 90/20; 2-й жилой район: G2=161.41 кг/с = 605.29 м3/ч, установим в параллель 4 насоса К 160/20 Промышленное предприятие: G3= 73.96 кг/с = 277.35 м3/ч, выбираем 2 насоса КМ 45/30 Характеристики выбранных насосов: Насос Подача, м3/ч ...
0 комментариев