Курсовая работа

Дисциплина Детали машин

Тема «Расчёт редуктора»


Содержание

 

Введение

1.       Кинематическая схема и исходные данные

2.       Кинематический расчет и выбор электродвигателя

3.       Расчет зубчатых колес редуктора

4.       Предварительный расчет валов редуктора и выбор подшипников

5.       нструктивные размеры шестерни и колеса

6.       Конструктивные размеры корпуса редуктора

7.       Первый этап компоновки редуктора

8.       Проверка долговечности подшипника

9.       Второй этап компоновки. Проверка прочности шпоночных соединений

10.    Уточненный расчет валов

11.    Вычерчивание редуктора

12.    Посадки шестерни, зубчатого колеса, подшипника

13.    Выбор сорта масла

14.    Сборка редуктора


Введение

Редуктором называют механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата и служащий для передачи вращения от вала двигателя к валу рабочей машины. Кинематическая схема привода может включать, помимо редуктора, открытые зубчатые передачи, цепные или ременные передачи. Указанные механизмы являются наиболее распространенной тематикой курсового проектирования.

Назначение редуктора – понижение угловой скорости и соответственно повышение вращающего момента ведомого вала по сравнению с ведущим. Механизмы для повышения угловой скорости, выполненные в виде отдельных агрегатов, называют ускорителями или мультипликаторами.

Редуктор состоит из корпуса (литого чугунного или сварного стального), в котором помещают элементы передачи – зубчатые колеса, валы, подшипники и т. д. В отдельных случаях в корпусе редуктора размещают также устройства для смазывания зацеплений и подшипников (например, внутри корпуса редуктора может быть помещен шестеренный масляный насос) или устройства для охлаждения (например, змеевик с охлаждающей водой в корпусе червячного редуктора).

Редуктор проектируют либо для привода определенной машины, либо по заданной нагрузке (моменту на выходном валу) и передаточному числу без указания конкретного назначения. Второй случай характерен для специализированных заводов, на которых организовано серийное производство редукторов.

Кинематические схемы и общие виды наиболее распространенных типов редукторов представлены на рис. 2.1-2.20 [Л.1]. На кинематических схемах буквой Б обозначен входной (быстроходный) вал редуктора, буквой Т – выходной (тихоходный).

Редукторы классифицируют по следующим основным признакам: типу передачи (зубчатые, червячные или зубчато-червячные); числу ступеней (одноступенчатые, двухступенчатые и т. д.); типу – зубчатых колес (цилиндрические, конические, коническо-цилиндрические и т. д.); относительному расположению валов редуктора в пространстве (горизонтальные, вертикальные); особенностям кинематической схемы (развернутая, соосная, с раздвоенной ступенью и т. д.).

Возможности получения больших передаточных чисел при малых габаритах обеспечивают планетарные и волновые редукторы.


1. Кинематическая схема редуктора

 

Исходные данные:

Мощность на ведущем валу транспортера ;

Угловая скорость вала редуктора ;

Передаточное число редуктора ;

Отклонение от передаточного числа ;

Время работы редуктора .

1 – электромотор;

2 – ременная передача;

3 – муфта упругая втулочно-пальцевая;

4 – редуктор;

5 – ленточный транспортёр;

I – вал электромотора;

II – ведущий вал редуктора;

III – ведомый вал редуктора.

 


2. Кинематический расчет и выбор электродвигателя

2.1 По табл. 1.1 коэффициент полезного действия пары цилиндрических зубчатых колес η1 = 0,98; коэффициент, учитывающий потери пары подшипников качения, η2 = 0,99; КПД клиноременной передачи η3 = 0,95; КПД плоскоременной передачи в опорах приводного барабана, η4 = 0,99

2.2 Общий КПД привода

η = η1 η2 η3 η4 = 0,98∙0,992∙0,95∙0,99= 0,90

2.3 Требуемая мощность электродвигателя

Pтр =  =  =1,88 кВт.

где PIII-мощность выходного вала привода,

h-общий КПД привода.

2.4 По ГОСТ 19523-81 (см. табл. П1 приложениях [Л.1]) по требуемой мощности Рдв = 1,88кВт выбираем электродвигатель трехфазный асинхронный короткозамкнутый серии 4А закрытый, обдуваемый, с синхронной частотой вращения 750 об/мин 4А112МА8с параметрами Рдв = 2,2кВт и скольжением 6,0%.

Номинальная частота вращения

nдв.=nc(1-s)

где nc-синхронная частота вращения,

s- скольжение

nдв =

2.5 Угловая скорость

ωI =  =  = 73,79рад/с.

2.6 Частота вращения

nIII=  = = 114,64об/мин

2.7 Передаточное отношение

Uоб= i =  =  = 6,1

где wI-угловая скорость двигателя,

wIII-угловая скорость выходного привода


Информация о работе «Расчёт редуктора»
Раздел: Промышленность, производство
Количество знаков с пробелами: 24270
Количество таблиц: 2
Количество изображений: 1

Похожие работы

Скачать
24123
5
0

Студент: Руководитель проекта: 1997г. Содержание задания курсового проекта:Предлагается спроектировать редуктор механизма азимутального вращения зеркала антенны самолетной РЛС приборного типа по приведённой в задании схеме с заданными параметрами:Угол обзора зеркала по азимуту, a,град . . . . . . . . . . . 140 Скорость обзора, n, ...

Скачать
30705
3
5

... для решения данной задачи является редуктор, который представляет систему зубчатых передач выполненных в герметично закрытом корпусе. Заданием данного курсового проекта является спроектировать червячный редуктор общего назначения, предназначенный для длительной эксплуатации и мелкосерийного производства. 2. Расчётная часть. 2.1. Кинематический расчёт и выбор эл. двигателя При ...

Скачать
24959
9
11

... профиль головки зуба, доведённый до цилиндра, оформленного конструктивно в виде так называемой цевки. Поэтому цевочное зацепление целесообразно назвать цевочным часовым зацеплением. 5. Разработка кинематической схемы а) Определение обще-передаточного отношения. Zi+1 – число зубьев ведомого колеса. б) Определение числа ступеней. Точность работы будет тем больше, чем меньше число ...

Скачать
68963
12
2

... 16x10 2-я зубчатая цилиндрическая передача Две шпонки призматические со скруглёнными торцами 14x9 Две шпонки призматические со скруглёнными торцами 18x11 8. Конструктивные размеры корпуса редуктора Толщина стенки корпуса и крышки редуктора: d = 0.025 · aw (тихоходная ступень) + 3 = 0.025 · 180 + 3 = 7,5 мм Так как должно быть d ³ 8.0 мм, принимаем d = 8.0 мм. d1 = 0.02 ...

0 комментариев


Наверх