7. Первый этап компоновки редуктора
Компоновку обычно проводят в два этапа. Первый этап служит для приближенного определения положения зубчатых колес относительно опор для последующего определения опорных реакций и подбора подшипников.
Выбираем способ смазывания: зацепление зубчатой пары – окунанием зубчатого колеса в масло; для подшипников – пластичный смазочный материал. Раздельное смазывание принято потому, что один из подшипников ведущего вала удален, и это затрудняет попадание масляных брызг. Кроме того, раздельная смазка предохраняет подшипники от попадания вместе с маслом частиц металла.
Камеры подшипников отделяем от внутренней полости корпуса мазе удерживающими кольцами.
Устанавливаем возможность размещения одной проекции – разрез по осям валов – на листе формата А1. Предпочтителен масштаб 1:1. проводим посредине листа горизонтальную осевую линию – ось ведущего вала. Намечаем положение вертикальной линии – ось ведомого вала. Из точки пересечения проводим под углом δ1=32о осевые линии делительных конусов и откладываем на них отрезки Re=105 мм.
Конструктивно оформляем по найденным выше размерам шестерню и колесо. Вычерчиваем их в зацеплении. Ступицу колеса выполняем несимметрично относительно диска, чтобы уменьшить расстояние между опорами ведомого вала.
Подшипники валов расположим в стаканах.
Намечаем для валов роликоподшипники конические однорядные легкой серии (см. таблица П7):
Условное обозначение подшипника | d | D | T | C | C0 | e |
мм | кН | |||||
7207 | 35 | 72 | 18,25 | 38,5 | 26 | 0,37 |
7209 | 45 | 85 | 20,75 | 50 | 33 | 0,41 |
Наносим габариты подшипников ведущего вала, наметив предварительно внутреннюю стенку корпуса на расстоянии 8-10 мм от торца шестерни и отложив зазор между стенкой корпуса и торцом подшипника для размещения мазеудерживающего кольцо 10-15 мм.
При установке радиально-упорных подшипников необходимо учитывать, что радиальные реакции считают приложенными к валу в точках пересечения нормалей, проведенных к срединам контактных площадок (см. табл. 9.21). для однорядных конических роликоподшипников по формуле:
мм.
Размер от среднего диаметра шестерни до реакции подшипника
f1=d1+a1=35+15,72=50,72 мм
Принимаем размер между реакциями подшипников ведущего вала
с1~(1,4÷2,3)·f1=(1,4÷2,3)·50,72=71÷116,6 мм
Принимаем с1=90 мм.
Размещаем подшипники ведомого вала, наметив предварительно внутреннюю стенку корпуса на расстоянии 10-15 мм от торца ступицы колеса и отложив зазор между стенкой корпуса и торцом подшипника 15-20 мм для размещения мазеудерживающего кольца.
Для подшипников 7209 размер мм
Определяем замером размер А – от линии реакции подшипника до оси ведущего вала. Корпус редуктора выполнен симметричным относительно оси ведущего вала и примем размер А = А = мм. Нанесём габариты подшипников ведомого вала.
Замером определяем расстояния f2= мм и с2= мм (так как А`+А=f2+c2).
Очерчиваем контур внутренней стенки корпуса, отложив зазор между стенкой и зубьями колеса, равный 1,5 х, т.е. 15мм.
8. Проверка долговечности подшипника
8.1 С точки зрения конструктивных соображений более рациональным будет просчитать долговечность наиболее нагруженного подшипника на валу, который вращается с большей частотой, т.е. подшипник находящейся радом с шестерней на ведущем валу.
Из предыдущих расчетов имеем Ft = 1920 H, Fr =592,6 H; Fa=370 Н из первого этапа компоновки с1 = 90 мм. и f1= 50.72 мм
Реакции опор:
в плоскости xz
Rx2c1 – Ft f1= 0 H ;
Rx2 = 1082 H;
Rx1c1 – Ft (f1 +c1)= 0 H ;
Rx1 = 3002 H;
Проверка: Rx2 – Rx1 + Ft = 1082 – 3002 + 1920 = 0 H;
в плоскости yz
-Ry2 + Frf1 - Fa = 0 H;
137 H ;
-Ry1 + Fr*(f1 + c1) - Fa = 0 H;
729,6 H;
Проверка: H;
Суммарные реакции:
Н ;
Н ;
Осевые составляющие радиальных реакций конических подшипников [формуле (9.9)]
S2 = 0.83ePr2 = 0.83*0.37*1090,6=334 H;
S1 = 0.83ePr1 = 0.83*0.37*3089,5 = 948,8 H;
здесь для подшипников 7207 параметр осевого нагружения e = 0,37
Осевые нагрузки подшипников (см. табл. 9,21) [ Л. 1.] В нашем случае S1>S2; Fa>0; тогда Pa1 = S1= 1002.4 H; Pa2 = S1 + Fa =1002.4 +370=1372.4 H
Рассмотрим левый подшипник
Отношение Pa1/ Pr1 = 948.8/3089.5 = 0.307>e, поэтому не следует учитывать осевую нагрузку.
Эквивалентная нагрузка Рэ1 =VРr1KбKT, в которой радиальная нагрузка Рr1 = 3089,6 Н; V = 1; коэффициент безопасности для приводов ленточных конвейеров Kб = 1 (см. табл. 9.19) [Л.1]; КT = 1 (см. табл. 9.20) [Л.1].
Рэ2 = 3089,6 Н.
Расчетная долговечность, млн. об [формула (9.1)]
млн. об
Расчетная долговечность, ч
404190 ч.
Найденная долговечность приемлема так, как требуемая долговечность намного меньше, чем расчетная долговечность подшипника.
Студент: Руководитель проекта: 1997г. Содержание задания курсового проекта:Предлагается спроектировать редуктор механизма азимутального вращения зеркала антенны самолетной РЛС приборного типа по приведённой в задании схеме с заданными параметрами:Угол обзора зеркала по азимуту, a,град . . . . . . . . . . . 140 Скорость обзора, n, ...
... для решения данной задачи является редуктор, который представляет систему зубчатых передач выполненных в герметично закрытом корпусе. Заданием данного курсового проекта является спроектировать червячный редуктор общего назначения, предназначенный для длительной эксплуатации и мелкосерийного производства. 2. Расчётная часть. 2.1. Кинематический расчёт и выбор эл. двигателя При ...
... профиль головки зуба, доведённый до цилиндра, оформленного конструктивно в виде так называемой цевки. Поэтому цевочное зацепление целесообразно назвать цевочным часовым зацеплением. 5. Разработка кинематической схемы а) Определение обще-передаточного отношения. Zi+1 – число зубьев ведомого колеса. б) Определение числа ступеней. Точность работы будет тем больше, чем меньше число ...
... 16x10 2-я зубчатая цилиндрическая передача Две шпонки призматические со скруглёнными торцами 14x9 Две шпонки призматические со скруглёнными торцами 18x11 8. Конструктивные размеры корпуса редуктора Толщина стенки корпуса и крышки редуктора: d = 0.025 · aw (тихоходная ступень) + 3 = 0.025 · 180 + 3 = 7,5 мм Так как должно быть d ³ 8.0 мм, принимаем d = 8.0 мм. d1 = 0.02 ...
0 комментариев