5.2 Коэффициент использования теплоты

 

Энергетическая эффективность котла-утилизатора характеризуется коэффициентом использования теплоты, или коэффициентом полезного действия h, %:

. (4.37)

Среднестатистические данные по тепловым потерям  и  приводятся в таблице исходных данных к настоящей работе. Потеря теплоты с уходящими из котла газами (продуктами сгорания) , %, определяется по формуле

, (4.38)

где  – энтальпия продуктов сгорания при температуре уходящих газов ;  – коэффициент избытка воздуха в уходящих газах (в данном случае коэффициент избытка воздуха по газоходам котла не меняется, то есть );  – энтальпия теоретически необходимого количества воздуха при температуре холодного воздуха . Температура уходящих газов для котлов подобного типа принимается равной 180 … 190 °С.

6. ПАРОПРОИЗВОДИТЕЛЬНОСТЬ КОТЛА

Одним из основных параметров котельного агрегата является его номинальная паропроизводительность , т. е. наибольшая паропроизводительность, которую котел должен обеспечивать в течение длительной эксплуатации при номинальных величинах параметров пара и питательной воды.

Однако при изменении количества, состава и температуры отходящих из технологической установки газов, изменении параметров вырабатываемого пара, а также конструкции поверхностей нагрева действительная паропроизводительность может отличаться от номинальной, вследствие чего она подлежит определению в поверочном тепловом расчете.

Паропроизводительность котла-утилизатора, в котором нет отбора к потребителям насыщенного пара и в котором отсутствует вторичный пароперегреватель, определяется по формуле:

, (4.39)

где  – расход смеси ОГ с ПГ;  – располагаемая теплота; h – коэффициент использования теплоты, %; , ,  – энтальпии соответственно перегретого пара, питательной воды и кипящей (продувочной) воды в барабане парового котла;  – коэффициент, учитывающий расход кипящей воды на непрерывную продувку* котла. Величина этого коэффициента , где  – расход продувочной воды, и составляет обычно 0,015 … 0,05. Температура питательной воды составляет 140 … 150 °С.

7. ЭКСЕРГЕТИЧЕСКИЙ АНАЛИЗ ЭФФЕКТИВНОСТИ КОТЛА-УТИЛИЗАТОРА

В последние годы в практике инженерных расчетов для оценки степени термодинамического совершенства энерготехнологических систем, теплотехнических установок и их элементов все шире используется эксергетический анализ. В его основе лежит понятие эксергии, под которой понимают максимальную работу термодинамической системы при обратимом переходе ее в состояние равновесия с окружающей средой. Эксергетический метод термодинамического анализа позволяет оценить:

качество (потенциал) энергии с точки зрения ее работоспособности, в частности, располагаемые резервы утилизации вторичных энергоресурсов (отходящих газов какого-либо производства, горячей воды и пара, отработавших в технологических и силовых установках, и др.);

снижение качества (“деградацию”) энергии из-за необратимого протекания реальных процессов (горения, теплообмена, смешения, трения и т.д.)

В зависимости от вида термодинамической системы и энергии, которая преобразуется в работу, различают несколько видов эксергии. При анализе эффективности котла-утилизатора целесообразно использовать понятия эксергии потока вещества и химической эксергии.



Информация о работе «Термодинамический анализ эффективности агрегатов энерготехнологических систем»
Раздел: Промышленность, производство
Количество знаков с пробелами: 39638
Количество таблиц: 6
Количество изображений: 0

Похожие работы

Скачать
25484
0
1

... на параметры и профиль ППТУ осуществляется с использованием ЕС ЭВМ и системы математических моделей, имитирующих функционирование энерготехнологических блоков. Проведено несколько серий расчетов на ЕС ЭВМ, которые отличаются по дискретным признакам типов и схем энерготехнологических блоков (с плазмопаровой и плазмокислородной газификацией, с плазмотермической газификацией, с внутрицикловой ...

Скачать
138019
0
0

... биогеохимический кругооборот. В социально-экономических системах около 90% материальных ресурсов переходит в отходы, а основное количество энергии используется в производстве и потреблении. Поэтому главной задачей промышленной экологии является нахождение путей для рационального использования природных ресурсов, предотвращения их исчерпания, деградации и загрязнения окружающей среды, а в конечном ...

Скачать
47414
0
13

... по энерготехнологической схеме. Потребность в энергии (пар) обеспечивается, в основном, за счет утилизации тепла реакций. 2.1 Технологический процесс фирмы “Kellogg” Предлагаемый технологический процесс предусматривает производство 1360 т/сутки жидкого безводного аммиака из природного газа. Проектом предусмотрена выдача продукционного аммиака при (+5)°С или (-33)°С. Основные стадии процесса ...

Скачать
44372
0
0

... пыли, °С до 100 Диаметр корпуса, мм 200 Число оборотов ротора, об/мин 350 Мощность привода, кВт 5,5 Габаритные размеры, LxBxH, мм 1300x744x554 3. Использование твердых отходов в качестве вторичных энергетических ресурсов и вторичных материальных ресурсов Термические методы уничтожения твердых BMP позволяют использовать энергетический потенциал отходов, а в случае комплексной переработки ...

0 комментариев


Наверх