8.1 Расчет экономии топлива
Как уже отмечалось ранее, использование вторичных энергоресурсов, имеющихся практически во всех отраслях промышленности, где применяются теплотехнологические процессы, позволяет обеспечить значительную экономию топлива и энергии.
Экономия топлива за счет использования отходящих газов сажевого производства в котле-утилизаторе для выработки пара определяется по формуле
, (8.1)
где – расход природного газа в смеси с отходящими газами; – количество природного газа, которое потребовалось бы без использования отходящих газов для выработки такого же количества пара тех же параметров, что и в котле-утилизаторе.
Величина приближенно вычисляется по формуле
, (8.2)
Где
.
Теплота, вносимая подогретым воздухом в топку (в расчете на 1м3 природного газа),
, (8.3)
где – объем воздуха необходимый для сжигания 1м3 природного газа при a=1.
На практике часто экономию топлива выражают в тоннах так называемого условного топлива, теплота сгорания которого составляет 29300 кДж/кг:
. (8.4)
1. Назначение котла-утилизатора.
2. Устройство котла-утилизатора типа ПКК, назначение его отдельных элементов.
3. Методика расчета процесса сгорания в котле-утилизаторе.
4. Как рассчитываются энтальпии воздуха и продуктов сгорания?
5. Тепловой баланс котла-утилизатора.
6. Коэффициент использования теплоты и его вычисление.
7. Что включает в себя располагаемая теплота?.
8. Методика расчета действительной паропроизводительности котла.
9. Адиабатная температура горения и ее вычисление.
10. Понятие эксергии.
11. Каковы цели эксергетического анализа котла-утилизатора?
12. Виды эксергии и расчетные формулы.
13. Эксергетический баланс котла-утилизатора.
14. Эксергетический КПД.
15. Формула для приближенного вычисления эксергии потока продуктов сгорания.
16. Формулы для вычисления эксергий потоков перегретого пара и питательной воды.
17. Виды потерь эксергии в котле.
18. Методика расчета дымовой трубы.
19. Методика расчета экономии топлива.
ПРИЛОЖЕНИЯ
Таблица П 1
Интерполяционные формулы для средних объемных теплоемкостей в изобарном процессе при атмосферном давлении 0,1013 МПа (линейная зависимость)
ГАЗ | = аi + bi t, кДж / (м3×К) |
ВОЗДУХ | = 1,287 + 1,201×10 -4t |
H2 | = 1,28 + 5,23×10-5t |
N2 | = 1,306 + 1,107×10-4t |
О2 | = 1,313 + 1,577×10-4t |
СО | = 1,291 + 1,21×10-4t |
СО2 | = 1,7132 + 4,723×10-4t |
Н2О | = 1,473 + 2,498×10 –4t |
СН4 | = 1,5491 + 1,181×10-3t |
Н2S | = 1,5072 + 3,266×10-4t |
Здесь t в °С.
Таблица П 2Термодинамические свойства воды и водяного пара в состоянии насыщения
р, МПа | 0,1 | 0,5 | 1,0 | 1,5 | 2,0 | 2,5 | 3,0 | 3,5 | 4,0 | 4,5 |
tН, °С | 99,63 | 151,85 | 179,88 | 198,28 | 212,37 | 223,94 | 233,84 | 242,54 | 250,33 | 257,41 |
h¢,кДж/кг | 417,5 | 640,1 | 762,6 | 844,7 | 908,6 | 962,0 | 1008,4 | 1049,8 | 1087,5 | 1122,2 |
h¢¢,кДж/кг | 2,6757 | 2748,5 | 2777,0 | 2790,4 | 2797,4 | 2800,8 | 2801,9 | 2801,3 | 2799,4 | 2796,5 |
Термодинамические свойства воды и перегретого пара
t, °C | р = 2,0 МПа | р = 2,5 МПа | р = 4,5 МПа | ||||||
n, м3/кг | h, кДж/кг | s, кДж/(кг×К) | n, м3/кг | h, кДж/кг | s, кДж/(кг×К) | n, м3/кг | h, кДж/кг | s, кДж/(кг×К) | |
0 | 0,00010 | 2,0 | 0,0000 | 0,00010 | 2,5 | 0,0000 | 0,00010 | 4,5 | 0,0002 |
50 | 0,00101 | 211,0 | 0,7026 | 0,00101 | 211,4 | 0,7023 | 0,00101 | 213,1 | 0,7014 |
100 | 0,00104 | 420,5 | 1,3054 | 0,00104 | 420,9 | 1,3050 | 0,00104 | 422,4 | 1,3034 |
150 | 0,00109 | 633,1 | 1,8399 | 0,00109 | 633,4 | 1,8394 | 0,00109 | 634,6 | 1,8372 |
200 | 0,00115 | 852,6 | 2,3300 | 0,00115 | 852,8 | 2,3292 | 0,00115 | 853,6 | 2,3260 |
250 | 0,1115 | 2902,5 | 6,5460 | 0,08701 | 2879,9 | 6,4087 | 0,00125 | 1085,8 | 2,7923 |
300 | 0,1255 | 3024,0 | 6,7679 | 0,09892 | 3009,4 | 6,6454 | 0,05136 | 2943,9 | 6,2848 |
350 | 0,1386 | 3137,2 | 6,9574 | 0,1098 | 3126,6 | 6,8415 | 0,05840 | 3081,3 | 6,5149 |
400 | 0,1512 | 3248,1 | 7,1285 | 0,1201 | 3239,9 | 7,0165 | 0,06473 | 3205,8 | 6,7071 |
450 | 0,1635 | 3357,7 | 7,2855 | 0,1301 | 3351,0 | 7,1758 | 0,07070 | 3323,8 | 6,8763 |
Примечание. Числовые значения выше разграничительной линии относятся к воде, ниже – к перегретому пару.
* Теплота подогрева воздуха в воздухоподогревателе в выражении (4.33) не учитывается, так как это же количество теплоты отдается продуктами сгорания воздуху в воздухоподогревателе в пределах котельного агрегата, т. е. осуществляется регенерация (возврат) теплоты.
* Продувка – это вывод из котла небольшого количества воды с большой концентрацией растворимых накипеобразующих солей.
... на параметры и профиль ППТУ осуществляется с использованием ЕС ЭВМ и системы математических моделей, имитирующих функционирование энерготехнологических блоков. Проведено несколько серий расчетов на ЕС ЭВМ, которые отличаются по дискретным признакам типов и схем энерготехнологических блоков (с плазмопаровой и плазмокислородной газификацией, с плазмотермической газификацией, с внутрицикловой ...
... биогеохимический кругооборот. В социально-экономических системах около 90% материальных ресурсов переходит в отходы, а основное количество энергии используется в производстве и потреблении. Поэтому главной задачей промышленной экологии является нахождение путей для рационального использования природных ресурсов, предотвращения их исчерпания, деградации и загрязнения окружающей среды, а в конечном ...
... по энерготехнологической схеме. Потребность в энергии (пар) обеспечивается, в основном, за счет утилизации тепла реакций. 2.1 Технологический процесс фирмы “Kellogg” Предлагаемый технологический процесс предусматривает производство 1360 т/сутки жидкого безводного аммиака из природного газа. Проектом предусмотрена выдача продукционного аммиака при (+5)°С или (-33)°С. Основные стадии процесса ...
... пыли, °С до 100 Диаметр корпуса, мм 200 Число оборотов ротора, об/мин 350 Мощность привода, кВт 5,5 Габаритные размеры, LxBxH, мм 1300x744x554 3. Использование твердых отходов в качестве вторичных энергетических ресурсов и вторичных материальных ресурсов Термические методы уничтожения твердых BMP позволяют использовать энергетический потенциал отходов, а в случае комплексной переработки ...
0 комментариев