3. РАСЧЕТ ТЕПЛОВОГО БАЛАНСА ПЛАВКИ
Расчет ведется на 100 кг металлошихты.
ПРИХОД ТЕПЛА:
= , кДж, (3.1)
где – физическое тепло жидкого чугуна;
– химическое тепло реакций окисления примесей металлошихты;
– химическое тепло реакций шлакообразования;
– химическое тепло реакций образования оксидов железа шлака;
– химическое тепло испарения железа до оксида железа;
– физическое тепло миксерного шлака.
Физическое тепло жидкого чугуна, кДж
= (3.2)
где – количество чугуна, кг;
– теплоемкость твердого чугуна (0,755 кДж/(кг · град);
– теплоемкость жидкого чугуна (0,92 кДж/(кг · град);
– температура заливаемого в конвертер чугуна, ;
– температура плавления (ликвидуса) чугуна (1150 – 1200 );
– скрытая теплота плавления чугуна (218 кДж/кг).
= 79,22[0,755∙1150 + 218 + (1340 – 1150) ∙ 0,92] = 99900,4 кДж
Химическое тепло окисления примесей металлошихты, кДж
Табл. 3.1 Химическое тепло окисления примесей
Элемент-оксид | Окисляется примесей, кг | Тепловой эффект р-ии окисления (на 1 кг эл-та), кДж | Выделяется тепла, кДж | % от Q2 |
С → СО | ==0,9∙3,157=2,841 | 11096 | =2,841∙11096=31523,7 | 48,4 |
С → СО2 | ==0,1∙∙3,157=0,316 | 34710 | ∙34710=0,316∙∙34710=10968,4 | 16,9 |
Si → SiO2 | = =0,72 | 26922 | ∙26922=0,72∙26922=19383,8 | 29,8 |
Mn → MnO | = = 0,354 | 7034 | ∙7034=0,354∙7034=2490 | 3,8 |
P → P2O5 | = = 0,0354 | 19763 | ∙19763=0,0354∙19763=699,6 | 1,1 |
Итого: | Q2=65065,6 | 100,00 |
Химическое тепло реакций шлакообразования, кДж
Принимаем, что весь SiO2 и P2O5 в шлаке связываются в соединения с оксидом кальция по реакциям:
SiO2+ 2СаО = кДж/ кг
P2O5 + 4СаО = кДж/ кг
тогда
= ; (3.3)
= 2,119∙2300 + 0,089∙4860 = 5301,4 кДж
Химическое тепло реакций образования оксидов железа шлака, кДж
= ,
где – количество тепла железа, окислившегося до ;
– количество тепла железа, окислившегося до .
кДж/кг;
кДж/кг.
= ; (3.4)
= 0,007∙14,379∙6,92∙7320 + 0,0078∙14,379∙13,86∙4820 = 12591,1 кДж
Химическое тепло реакций окисления железа до оксида железа дыма, кДж
= , (3.5)
= 1,2∙7370 = 8844 кДж
Физическое тепло миксерного шлака, кДж
= , (3.6)
где – средняя температура миксерного шлака, ;
=
= 1340 – 16 = 1324
– средняя теплоемкость миксерного шлака, кДж/(кг∙град)
= ;
= 0,73 + 0,00025(1324 + 273) = 1,13 кДж/(кг∙град)
= 210 кДж/кг – скрытая теплота плавления миксерного шлака;
= 0,63(1,13∙1324 + 210) = 1074,9 кДж
= 99900,4 + 65065,6 + 5301,4 + 12591,1 + 8844 + 1074,9 = 192777,4
Расход тепла, кДж
= , (3.7)
где – физическое тепло жидкой стали;
– физическое тепло конечного шлака;
– тепло отходящих газов;
– тепло диссоциации влаги, вносимой шихтой;
– тепло диссоциации шихтовых материалов;
– тепло диссоциации оксидов железа, внесенных шихтой;
– тепло, уносимое оксидом железа дыма;
– тепло, уносимое железом выбросов;
– тепло, уносимое железом корольков;
– потери тепла на нагрев футеровки, излучением через горловину, на нагрев воды, охлаждающей фурму и другие неучтенные потери.
Физическое тепло жидкой стали, кДж
= , (3.8)
где = 0,70 кДж/(кг · град) – теплоемкость твердого металла;
= 0,84 кДж/(кг · град) – теплоемкость жидкого металла;
– температура металла в конце продувки;
– температура плавления (ликвидуса) металла, ;(см. раздел 1)
= 285 кДж/кг – скрытая теплота плавления металла.
= 90,31[0,70∙1507 + 285 + (1614 – 1507) ∙ 0,84] = 129123,4кДж
Физическое тепло жидкого шлака, кДж
= , (3.9)
где
= 0,73 + 0,00025 – средняя теплоемкость конечного шлака,
= 0,73 + 0,00025(1614 + 273) = 1,2 кДж/(кг · град)
= 210 кДж/кг – скрытая теплота плавления шлака;
= 14,379(1,2∙1614 + 210) = 30868,8 кДж
Тепло, уносимое отходящими газами, кДж
Среднюю температуру отходящих газов принимаем равной средней температуре металла во время продувки:
= = = 1477
= Σ, (3.10)
где – количество составляющей отходящих газов, и т.д., нм3 (см. табл. 2.5);
- средняя теплоёмкость газов, кДж/(м3∙град) (из табл. 3.2 заносим в табл. 3.3)
Табл. 3.2 Теплоёмкость газов
Газ | Средняя теплоёмкость, кДж/(м3∙град) при , 0С | ||||||
1100 | 1200 | 1300 | 1400 | 1500 | 1600 | 1700 | |
CO2 | 2,26 | 2,28 | 2,30 | 2,32 | 2,34 | 2,36 | 2,38 |
CO | 1,43 | 1,44 | 1,45 | 1,46 | 1,47 | 1,48 | 1,49 |
H2O | 1,77 | 1,79 | 1,81 | 1,83 | 1,85 | 1,87 | 1,89 |
H2 | 1,33 | 1,34 | 1,35 | 1,36 | 1,37 | 1,38 | 1,39 |
N2 | 1,40 | 1,41 | 1,42 | 1,43 | 1,44 | 1,45 | 1,46 |
O2 | 1,49 | 1,50 | 1,51 | 1,52 | 1,53 | 1,54 | 1,55 |
Табл. 3.3 Тепло отходящих газов
Газ | Количество газов, нм3 | Средняя теплоемкость газов | Уносится тепла, кДж |
СО2 | 0,749 | 2,34 | 2588,7 |
СО | 5,304 | 1,47 | 11516 |
0,07 | 1,85 | 191,3 | |
0,034 | 1,37 | 68,8 | |
0,028 | 1,44 | 59,6 | |
0,015 | 1,53 | 33,9 | |
Итого: | Q3′ = 14458,3 |
Тепло диссоциации влаги, вносимой шихтой, кДж
При диссоциации влаги по реакции:
= + 0,5 – 242000 кДж/(кг - моль)
поглощается тепла
= · 242000 кДж, (3.11)
= = 367,3 кДж
Тепло диссоциации шихтовых материалов, кДж
При диссоциации шихтовых материалов по реакции:
= + СО2 – 4025 кДж/кг СО2 поглощается тепла:
= = ; (3.12)
= 1,472∙4025 = 5924,8 кДж
Тепло диссоциации оксидов железа, внесенных шихтой, кДж
При диссоциации оксидов железа, внесенных шихтой и футеровкой, поглощается тепла:
= , (3.13)
где – количество тепла, теряемого ванной при диссоциации оксидов железа по реакции:
= – 5160 кДж/кг ;
– количество тепла, теряемого ванной при диссоциации закиси железа по реакции:
= – 3750 кДж/кг ;
= ; (3.14)
= 0,01(0,3∙2,1 + 0,0065∙20,78∙3,0 + 0,012∙20,78∙69,0) = 0,182 кДж/кг
= ; (3.15)
= 0,01(0,63∙16,3 + 0,012∙20,78∙31,0) = 0,18 кДж/кг
тогда
= ; кДж
= 0,182∙5160 = 939,1 кДж
= ; кДж
= 0,18∙3750 = 675 кДж
= 939,1 + 675 = 1614,1 кДж
Тепло, уносимое оксидом железа дыма, кДж
= , (3.16)
где = 0,88 кДж/кг;
= 1,716∙0,88∙1477 = 2230,4 кДж
Тепло, уносимое железом выбросов, кДж
= , (3.17)
где = = 0,84 кДж/(кг · град);
= 0,8∙0,84∙1477 = 992,5 кДж
Тепло, уносимое железом корольков, кДж
= , (3.18)
где = = 0.84 кДж/(кг · град); =
= 1,15∙0,84∙1477 = 1426,8 кДж
Потери тепла на нагрев футеровки конвертера, излучением через горловину, с охлаждающей водой и т.д. составляют обычно 1,5 – 3,0% от прихода тепла, кДж
Принимаем эти потери f = 2,5 %
= (3.19)
= 192777,4∙2,5/100 = 4819,4 кДж
= 129123,4 + 30868,8 + 14458,3 + 367,3 + 5924,8 + 1614,1 + 2230,4 + 992,5 + 1426,8 + 4819,4 = 191825,8 кДж
Табл. 3.4Тепловой баланс плавки
Приход | Расход | ||||
Статьи прихода | кДж | % | Статьи расхода | кДж | % |
Физическое тепло чугуна | 99900,4 | 51,8 | Физ. тепло жидкого металла | 129123,4 | 67,4 |
Тепло окисления примесей | 65065,6 | 33,7 | Физическое тепло шлака | 30868,8 | 16,1 |
Тепло шлакообразования | 5301,4 | 2,8 | Тепло отходящих газов | 14458,3 | 7,5 |
Тепло образования оксидов Fe шлака | 12591,1 | 6,5 | Тепло диссоциации влаги | 367,3 | 0,2 |
Тепло окисления Fe дыма | 8844 | 4,6 | Тепло диссоциации | 5924,8 | 3,1 |
Физическое тепло миксерного шлака | 1074,9 | 0,6 | Тепло диссоциации оксидов Fe шихты | 1614,1 | 0,8 |
Тепло, унос. окс. Fe дыма | 2230,4 | 1,2 | |||
Тепло выбросов Fe | 992,5 | 0,5 | |||
Тепло Fe корольков | 1426,8 | 0,7 | |||
Потери тепла конвертером | 4819,4 | 2,5 | |||
Итого | 192777,4 | 100 | Итого | 191825,8 | 100 |
Избыток тепла
∆Q = 192777,4 – 191825,8 = 951,6 кДж
Невязка составляет
= 0,49 %
Определяем расход материалов на плавку
Табл. 3.5 Расход материалов
№ п/п | Наименование | Расход материалов | |
На 100 кг, кг | На 130т, т | ||
1 | Чугун | 79,22 | 102,986 |
2 | Миксерный шлак | 0,63 | 0,819 |
3 | Лом | 20,78 | 27,014 |
4 | Известь | 7,94 | 10,322 |
5 | Плавиковый шпат | 0,4 | 0,520 |
6 | Футеровка | 0,3 | 0,390 |
7 | Дутье, нм3 | 4,916 | 6,391 |
ПЕРЕЧЕНЬ ИСТОЧНИКОВ
1. Бигеев А.М. Основы математического описания и расчеты кислородно – конвертерных процессов / А.М. Бигеев, Ю.А. Колесников.- М.: Металлургия, 1970.-232с.
2. Якушев А.М. Справочник конвертерщика / А.М. Якушев. – Челябинск : Металургия, 1990.- 448с.
3. Баптизманский В.И. Конвертерные процессы производства стали / В.И.Баптизманский, М.Я. Меджибожский, В.Б.Охотский.- К. – Д. : Высшая школа, 1984 – 343с.
... рынки сбыта и обеспечить решение вышеперечисленных задач. Этого можно добиться лишь за счет коренного технического перевооружения и новых технологий. 1.2 Вариант строительства ККЦ № 2 ММК Кислородно-конвертерный цех № 2 ОАО «ММК» предполагается строить на площадке перед имеющимся сортовым станом блюминга № 3. Это позволит значительно сократить время транспортировки горячих блюмов из ...
и специфические свойства чугуна и стали. 3. Сделать вывод. При написании данной работы использовалась учебная и методическая литература. 1. Характеристика материалов 1.1 Чугун Чугун (тюрк.), сплав железа с углеродом (обычно более 2%) содержащий также постоянные примеси (Si, Mn, Р и S). Широко применяемые марки чугунов обычно содержат 2,5-4% углерода, 1-5% кремния, до 2% марганца, а ...
... шихты на 1 тонну годных слитков и стоимости передела. Она включает также расход энергии, электродов, огнеупоров, изложниц, зарплату персоналу. Основные технико-экономические показатели способов производства стали. Показатель Способ производства стали конвертер-ный мартеновский электропла-вильный Вместимость плавильного агрегата, т. 250-400 400-600 200-300 Выход годного (стали),% ...
... застывания в изложницах и строению получающегося слитка. Классификация стали и требования к ее составу и качеству обусловлены соответствующими государственными стандартами и техническими условиями. По способу производства сталь может быть мартеновской, конвертерной, электросталью, электрошлакового переплава и полученной другими способами. По назначению можно выделить следующие основные группы ...
0 комментариев