Федеральное агентство по образованию
Новокузнецкий филиал-институт
Кемеровского государственного университета
Кафедра экономики
Студент группы ЭПЗВ-06/1
Глебова Ирина Александровна
КОНТРОЛЬНАЯ РАБОТА
ПО ОСНОВАМ ТЕХНИЧЕСКИХ ЗНАНИЙ
«ПРОИЗВОДСТВО СТАЛИ»
Руководитель:
Синявский Игорь Александрович
Контрольная работа
допущена к защите защищена
_________________ _______________
подпись руководителя подпись руководителя
«__» _______ 200_ г. «__» _______ 200_ г.
Новокузнецк 2006
СОДЕРЖАНИЕ
Введение
1 Классификация стали
2 Сталеплавильные шлаки
3 Неметаллические включения в стали
4 Раскисление и легирование стали
4.1 Раскисление стали
4.2 Легирование стали
5 Шихтовые материалы сталеплавильного производства
6 Конвертерное производство стали
6.1 Конвертерные процессы с донным воздушным дутьем
6.1.1 Плавка в бессемеровском конвертере
6.1.2 Плавка в томасовском конвертере
6.2 Кислородно-конвертерные процессы
7 Мартеновское производство стали
7.1 Разновидности мартеновского процесса
7.1.1 Основной мартеновский процесс
7.1.2 Кислый мартеновский процесс
8 Выплавка стали в электрических печах
8.1 Электрический режим
8.2 Выплавка стали в основных дуговых электропечах
8.3 Выплавка стали в кислых дуговых электропечах
8.4 Выплавка стали в индукционных печах
Заключение
Список использованных источников и литературы
ВВЕДЕНИЕ
Сталь – это сплав железа с углеродом и другими химическими элементами. В этом сплаве железо является основой (растворителем), а другие элементы – примесями, растворенными в железе. Примеси могут оказывать на свойства стали как положительное, так и отрицательное влияние, поэтому их делят на полезные и вредные. Полезные примеси в основном влияют на свойства кристаллов (зерен), а вредные примеси ухудшают межкристаллические (межзеренные) связи. В сталях большинства марок главной полезной примесью является углерод. Такие стали называют углеродистыми. Содержание углерода в углеродистых сталях чаще всего составляет 0,05 – 0,50 %, но может достигать ≥ 1 % (теоретически до 2,14 %). В углеродистых сталях в качестве полезной примеси также могут содержаться марганец (0,3 – 0,6 %) и кремний (0,15 – 0,3 %). Содержание вредных примесей, которыми обычно являются сера, фосфор, кислород и азот, ограничивают сотыми и тысячными долями процента.
Металлургия стали как производство возникла примерно 3,5 тыс. лет назад в районе Суэцкого залива (Сирия, Египет). Путь развития черной металлургии можно разделить на несколько этапов.
По применяемому основному сырью или технологической схеме сталеплавильное производство имеет два основных этапа развития: 1) прямое получение стали из железных руд так называемым сыродутным процессом, т.е. одноступенчатое производство по схеме железная руда – сталь; 2) получение стали путем рафинирования чугуна, т.е. двухступенчатое производство по схеме железная руда – чугун – сталь.
Развитие производства стали путем рафинирования чугуна, обеспечивающее наибольший технический прогресс, в свою очередь имеет три важных этапа развития, на каждом из которых, как правило, использовалось несколько способов получения стали.
Первый этап – передел чугуна в сталь, получаемую в тестообразном состоянии в виде крицы (сварочного железа). Он начался с применением кричного процесса, на смену которому пришел пудлинговый процесс (1784 г., Англия).
Второй этап – передел чугуна в жидкую сталь без добавки или с добавкой лома (скрапа) в агрегатах периодического действия без применения кислородного дутья. Начало этого этапа связано с созданием бессемеровского процесса (1855 – 1860 гг., Англия). Дальнейшее его развитие привело к разработке мартеновского (1864 – 1865 гг., Франция), томасовского (1877 – 1879 гг., Англия) и электродугового (1900 г., Франция) процессов. Переход к получению стали в жидком состоянии позволил совершить скачок в интенсификации производства – в повышении производительности агрегатов и улучшении качества стали.
Третий этап – передел чугуна в жидкую сталь в агрегатах периодического действия с применением кислородного дутья. Это современный этап развития сталеплавильного производства, имеющий следующие особенности: внедрение в широкое использование кислородно-конвертерного процесса (1952 1953 гг., Австрия); применение кислорода для интенсификации мартеновского и электродугового процессов; широкое использование в целях повышения качества стали способов внеагрегатной (ковшовой) обработки жидкой стали – синтетическими шлаками или шлаковыми смесями, вакуумом, инертными газами в сочетании с микролегирующими порошками или без них, а также способов переплава стали в особых условиях (электрошлакового, вакуумно-дугового, электронно-лучевого, плазменно-дугового).
... шихты на 1 тонну годных слитков и стоимости передела. Она включает также расход энергии, электродов, огнеупоров, изложниц, зарплату персоналу. Основные технико-экономические показатели способов производства стали. Показатель Способ производства стали конвертер-ный мартеновский электропла-вильный Вместимость плавильного агрегата, т. 250-400 400-600 200-300 Выход годного (стали),% ...
... ферромарганец в количестве, обеспечивающем заданное содержание марганца в стали, а также производят науглероживание, если выплавляют высокоуглеродистые стали (до 1,5% С). Производство стали в электропечах относится к области техники, именуемой общим понятием «электрометаллургия». По сути, электрометаллургия охватывает все промышленные способы получения металлов и сплавов с помощью электрического ...
... и снижения окисления железа в шлак. Технико-экономические показатели работы конвертеров включают производительность, себестоимость и качество. Кислородно-конвертерный процесс является самым производительным из всех процессов производства стали. Современный конвертерный цех с двумя конвертерами (один – в работе, другой – в ремонте) обеспечивает производство до 5 млн. т стали в год. Себестоимость ...
0 комментариев