Розробка принципової схеми комп’ютеризованої вимірювальної системи параметрів електричних машин з газомагнітним підвісом

Комп’ютеризована вимірювальна система параметрів електричних машин з газомагнітним підвісом
Огляд аналогів розробляємої комп’ютеризованої вимірювальної системи параметрів електричних машин з газомагнітним підвісом Техніко-економічне обґрунтування доцільності розробки комп’ютеризованої вимірювальної системи параметрів електричних машин з газомагнітним підвісом Проведення маркетингових досліджень Економічна доцільність нової технічної розробки Розробка принципової схеми комп’ютеризованої вимірювальної системи параметрів електричних машин з газомагнітним підвісом Розробка первинного вимірювального перетворювача Розробка пристрою спряження перетворювача з ПЕОМ КОм (5.2) Розробка програмного забезпечення Розрахунок похибки вимірювання кутової швидкості Економічна частина Розрахунок виробничої собівартості комп’ютеризованої вимірювальної системи параметрів електричних машин з газомагнітним підвісом Розрахунок експлуатаційних витрат для нового пристрою Погіршення стану здоров’я користувачів ЕОМ, які пов’язані зі стресом Дія іонізуючих випромінювань та електромагнітного імпульсу на радіоелектронні системи Мета та вихідні дані для проведення робіт
129405
знаков
15
таблиц
14
изображений

4. Розробка принципової схеми комп’ютеризованої вимірювальної системи параметрів електричних машин з газомагнітним підвісом

4.1 Аналіз лінійного фотоприймача

Фотоелектричні перетворювачі площа-напруга (ППН) використовуються у багатьох пристроях, таких як перетворювачі інтенсивності світлового потоку, первинні тахометричні перетворювачі та інші. Розглянемо ППН на основі пари фотодіод-операційний підсилювач (Рисунок 4.1). У цій схемі фотодіод VD діє як генератор струму, а операційний підсилювач DA перетворює цей струм у напругу. Залежність струму, що протікає через фотодіод, від потоку опромінення, описується виразом:

Рисунок 4.1 - Фотоприймач на основі пари фотодіод - операційний підсилювач (а) та його еквівалентна схема (б)

 (4.1)


де IVD - струм фото діоду;

SI0 - інтегральна струмова чутливість фотодіоду при немодульованому опроміненні;

 - потік опромінення;

IS - темновий струм фото діоду;

U - падіння напруги на фотодіоді;

Т - абсолютна температура;

k - постійна Больцмана;

е - заряд електрона;

 - циклічна частота потоку опромінення;

 - постійна часу фотодіоду, яка залежить від значень внутрішнього опору фотодіоду RVD, паразитної ємності фотодіоду СVD, часом розсосування неосновних носіїв заряду.

При використанні джерела світла з конденсорною лінзою, можна отримати плоско-паралельний потік опромінення, однаковий на всій площині, що освітлюється. У цьому випадку потік опромінення та площа фоточутливого шару фотодіоду, що опромінюється, зв’язані співвідношенням:

, (4.2)

де J- інтенсивність променевого потоку;

r - відстань від джерела світла до поверхні, що освітлюється;

S - площа, що опромінюється;

I - сила світла.

Вихідна напруга ППН, з урахуванням напруги зміщення нуля, різниці вхідних струмів, напруги шуму, описується виразом:


 (4.3)

де К - коефіцієнт передачі операційного підсилювача;

RВХ - вхідний опір операційного підсилювача;

 - напруга зміщення нулю операційного підсилювача;

 - різниця вхідних струмів операційного підсилювача;

 - напруга шуму на виході фотоприймача.

Модуль вихідної напруги шуму визначається виразом:

, (4.4)

де  - спектральна щільність напруги шуму операційного підсилювача;

 - спектральна щільність шумового струму операційного підсилювача;

 - спектральна щільність шумового струму фотодіоду;

 - спектральна щільність шумового струму опору зворотного зв’язку.

Після перетворень, отримуємо вираз, що зв’язує спектральну щільність вихідної напруги фотоприймача з комплексною амплітудою площі фоточутливого шару фотодіоду, що освітлюється


 (4.5)

Вираз (4.5) можна спростити. Різниця вхідних струмів  для сучасних операційних підсилювачів складає одиниці нА, а напруга зміщення  - одиниці мВ. При умовах  та , значеннями  та  можна знехтувати. При використанні елементної бази з низьким рівнем шумів, шумовою складовою виразу (4.5) можна знехтувати. Внаслідок малого значення падіння напруги на фотодіоді при його роботі у фотовольтаічному режимі та малого значення темнового струму, друга складова чисельника виразу (4.5) близька до нуля.

Вираз (4.5) описує математичну модель ППН, що дозволяє проводити його моделювання з урахуванням частотних та шумових властивості елементної бази, на основі якої побудовано перетворювач. Наведена модель є лінійною, тобто вона не враховує нелінійність фотодіоду. Це справедливо при умові, що фотодіод при роботі не наближується до стану насичення, де його нелінійні властивості особливо проявляються.

В більшості випадків гранична частота фотодіоду значно менша за граничну частоту операційного підсилювача. Тому спад частотної характеристики в області верхніх частот визначається частотними властивостями фотодіоду. Це дає змогу знехтувати впливом паразитної ємності в колі зворотного зв’язку та вхідною ємністю операційного підсилювача. Вхідний опір сучасних операційних підсилювачів складає десятки МОм, що значно перевищує опір в колі зворотного зв’язку та внутрішній опір фотодіоду. Тому можна прийняти . При умові, що частота опромінення значно менша за граничну частоту фотодіода, його частотними властивостями можна знехтувати, вираз (4.5) прийме вигляд:

 (4.6)

Вираз (4.6) є максимально спрощеною математичною моделлю фотоприймача на основі пари фотодіод-операційний підсилювач як перетворювача площі в напругу, яку можна використовувати при умові того, що ширина спектру опромінення значно менша граничної частоти фотодіоду.


Информация о работе «Комп’ютеризована вимірювальна система параметрів електричних машин з газомагнітним підвісом»
Раздел: Промышленность, производство
Количество знаков с пробелами: 129405
Количество таблиц: 15
Количество изображений: 14

0 комментариев


Наверх