1 Знание необходимых основ психогенетики

 

1.1 Введение в популяционную генетику

Эволюция, идущая на уровне ниже вида (подвиды, популяции) и завершающаяся видообразованием, называется микроэволюцией (эволюция популяций под действием естественного отбора). Микроэволюционные явления и процессы нередко совершаются в относительно небольшие сроки и поэтому доступны для непосредственного наблюдения.

Эволюция на уровне систематических единиц выше вида, протекающая миллионы лет и недоступная непосредственному изучению, называется макроэволюцией. Процессов макроэволюции мы непосредственно не видим, но можем наблюдать их результаты: современные организмы и ископаемые остатки живших ранее существ.

Термины «микроэволюция» и «макроэволюция» ввел в биологию русский генетик Ю.А. Филиппченко в 1927 г. Эти два процесса едины, макроэволюция является продолжением микроэволюции. Главная заслуга в разработке популяционной генетики, а особенно ее теоретического и математического аспектов, в раннем периоде (1920–1940 гг.) принадлежит С.С. Четверикову, С. Райту, Р. Фишеру, Дж. Холдейну, А.С. Серебровскому и Н.П. Дубинину.

На стыке классического дарвинизма и генетики родилось целое направление – популяционная генетика, занимающаяся изучением эволюционных процессов в популяциях.

В 20-е гг. XX в. между генетикой и эволюционной теорией Дарвина возникло разногласие. Высказывались мнения о том, что генетика отменила якобы устаревший дарвинизм.

Наши отечественные ученые первыми поняли значение сравнительно мелких объединений особей, на которые распадается население любого вида, – популяций.

В 1926 г. С.С. Четвериков (1880–1959) написал свою главную работу «О некоторых моментах эволюционного процесса с точки зрения современной генетики». Четвериков доказал, что расширение знаний о природе наследственности, наоборот, укрепило и развило дарвинизм. Выход в свет его работы дал начало синтетической теории эволюции, объединившей генетику и учение Дарвина, – эволюционной генетике. Популяционная генетика в первую очередь занимается выяснением механизмов микроэволюции.

Главное начало, объединяющее особей в одну популяцию, – имеющаяся у них возможность свободно скрещиваться между собой – панмиксия (от греч. пан – все и миксис – смешивание). Панмиксия - свободное, основанное на случайном, равновероятном сочетании всех типов гамет, скрещивание разнополых особей и перекрестно оплодотворяющихся организмов, в пределах популяции или другой внутривидовой группы организмов. Полная панмиксия возможна лишь в идеальных, бесконечно больших популяциях. Возможность скрещивания, доступность партнера внутри популяции при этом обязательно должна быть выше, чем возможность встретиться двум особям противоположного пола из разных популяций. Панмиксия обеспечивает возможность постоянного обмена наследственным материалом. В результате формируется единый генофонд популяции. Генофонд (от греч. генос – рождение и лат. фонд – основание, запас) – совокупность генов, которые имеются у особей данной популяции (термин введен в биологию в 1928 г. А.С. Серебровским).

 

1.2 Частота (концентрация) генов и генотипов

Важнейшая особенность единого генофонда – его внутренняя неоднородность. Генофонд (совокупность генов данной популяции, группы особей или вида) популяции может быть описан либо частотами генов, либо частотами генотипов.

Ген – это наследственный фактор, функционально неделимая единица наследственности. Участок молекулы ДНК (у некоторых вирусов - РНК), который кодирует первичную структуру полипептида (белка) или молекулу транспортной или рибосомной РНК, либо взаимодействует с регуляторным белком.

Ген – (греч. Genos – происхождение) – характеристика врожденных свойств, единица наследственного материала (генетической информации). Участок молекулы ДНК (у высших организмов) и РНК (у вирусов и фагов), содержащий информацию о первичной структуре одного белка. Совокупность всех генов организма составляет генотип. Каждый ген ответствен за синтез определенного белка (полипептидной цепи). Контролируя его образование, ген управляет всеми химическими реакциями организма, а потому определяет его признаки. На ДНК-матрице гена синтезируется информационная РНК, которая затем сама служит матрицей для синтеза белка. Следовательно, ген служит основой системы ДНК - РНК - белок. [5]

Важнейшее свойство гена - сочетание их высокой устойчивости (неизменяемости в ряду поколений) со способностью к наследуемым изменениям - мутациям, служащим основой изменчивости организмов, дающей материал для естественного отбора. Дискретное наследование задатков было открыто в 1865 году австрийским естествоиспытателем г. Менделем (1822 - 1884). В 1909 г. Датский генетик Иогансен (1857 - 1927) назвал их генами.

Предположим, что нас интересует какой-либо ген, локализованный в аутосоме, например ген А, имеющий два аллеля – А и а. При этом аллелизм – это парность гомологичных генов, определяющих разные фенотипические признаки у диплоидных организмов. А аллель – это одно из возможных структурных состояний гена. В определенном локусе хромосомы представлен только один из аллелей. У диплоидных организмов ген бывает представлен парой аллелей, располагающихся в гомологичных хромосомах. Потенциальное число аллелей в популяции неограниченно.

Предположим, что в популяции имеется N особей, различающихся по этой паре аллелей. В популяции встречаются три возможных генотипа – АА; Аа; аа. Генотип – это совокупность аллелей клетки или организма, генетическая конституция. Генотип является характеристикой индивида. Фенотип – совокупность всех признаков особи в каждый конкретный момент ее жизни. Фенотип формируется при участии генотипа под влиянием условий среды. Фенотип есть частный случай реализации генотипа в конкретных условиях.

Фенотип (греч. фено – являю + тип) – это совокупность всех внутренних и внешних признаков и свойств особи, сформировавшихся на базе генотипа в процессе ее индивидуального развития (онтогенеза); служит одним из вариантов нормы реакции организма на действие внешних условий. При относительно одном и том же генотипе (абсолютного идентичного генотипа, за исключением однояйцевых близнецов, быть не может) в определенных пределах возможны бесчисленные варианты фенотипов (например, множество пород собак).



Информация о работе «Закон Харди-Вайнберга и его ограничения»
Раздел: Психология
Количество знаков с пробелами: 41569
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
126782
0
0

... . Совокупность сцепленных генов одной хромосомы, контролирующих аллогруппу, называют гаплотипом. Значение: 1) изучение причин и динамики генотипической изменчивости, составляющей основу эволюционной генетики; 2) уточнение происхождения отдельных животных; 3) определения моно- и дизиготных двоен; 4) построение генетических карт хромосом; 5) использование биохимических систем в качестве генетических ...

Скачать
141845
0
657

... поколений. Естественно, особенно они заметны, если популяция находится в изоляции, т.е. отсутствует миграция генов извне. Известны сообщества такого рода в человеческом обществе. Часть 2 Математические модели нейронных систем Изучение нейронных систем -одно из самых романтических направлений научных исследований, поскольку нейронные системы присущи как человеку, так и животным. Самая ...

Скачать
143087
0
437

... показывают: Таким образом, . Совершенно аналогично: , , . В равновесных состояниях частоты гамет являются произведениями частот соответствующих генов. Верно и обратное утверждение. Часть 2 Математические модели нейронных систем Изучение нейронных систем -одно из самых романтических направлений научных исследований, поскольку нейронные системы присущи как человеку, так и животным. Самая ...

Скачать
24369
7
0

... аллеля равна 0.99, а частота рецессивного аллеля альбинизма – 0.01. Общая частота аллелей в популяции составляет 100%, или 1.0, поэтому Частота доминантного аллеля + Частота рецессивного аллеля =1 0.99 + 0.01 =1 Как это принято в классической генетике, аллели можно обозначить буквами, например, доминантный аллель (нормальная ...

0 комментариев


Наверх