1.1 Фильтры верхних частот на одном усилителе с положительным коэффициентом усиления

Обобщенная передаточная функция по напряжению ФВЧ второго порядка имеет вид

 (1.1)

В этом выражении Н0 — коэффициент передачи на бесконечно большой частоте, ωn – собственная частота, Q –добротность.

Преобразуя (1.1) получаем:

 (1.2)

Сравнивая (1.1) и (1.2) и анализируя результат можно получить первый вариант расчетных формул. Выбирая R2=R4=R и С1=Сз=С, получаем:


; 1/Q=3-K; H0=K, (1.3а), (1.3б), (1.3в)

Реализацию ФВЧ второго порядка можно получить подстановкой К=1. Полагая m=С31, и n=R4/R2 и подставляя С1=С и R2=R, получаем вместо (1.2)

 (1.4)

Сравнивая полученное с (1.1), находим еще один вариант расчетных формул (вариант 2):

  (1.5)

Отсюда видно, что для любого заданного значения п минимум 1/Q достигается при m=1. Так как обычно желательно иметь минимум 1/Q для любого заданного п, то примем m=1. В этом случае (1.5) упрощается и принимает вид

  (1.6)

В другом используемом на практике наборе номиналов элементов RС-фильтра верхних частот на одном усилителе с положительным коэффициентом усиления, емкости обоих конденсаторов имеют равные номиналы, а коэффициент усиления ИНУН равен двум. Тогда нормированные значения С13=С и K=2. Используя выражение (1.2), в этом случае находим

  (1.7)


Преимущество структурs Саллена и Ки на усилителе с положительным коэффициентом усиления заключается в том, что она характеризуется в общем случае простыми расчетными соотношениями; проектировщик имеет возможность легко управлять значениями номиналов элементов и их разбросом; кроме того, допустимо использовать небольшие значения коэффициента усиления ИНУН, которые удобны тем, что их легко стабилизировать. Есть также и некоторые недостатки; основной из них состоит в том, что она характеризуется высокими значениями чувствительности, если с их помощью пытаются реализовать схемы с высоким Q.

1.2 Фильтры, реализующие комплексно-сопряженные нули

Рассмотрим реализации активных фильтров для обобщенной передаточной функции второго порядка. Их обычно относят к биквадратным функциям фильтрации. Общий вид биквадратных передаточных функций по напряжению второго порядка такой

 (1.8)

где Н — постоянная, ωz и ωp— нули и полюсы, соответствующие собственным частотам, а Qz и Qp—добротности комплексных нулей и полюсов. Предполагается, что нули могут быть вещественными или комплексными и что они могут быть расположены в любом месте на плоскости комплексной частоты, включая и правую полуплоскость.

Первый тип биквадратного фильтра реализуется на основе схемы с одним усилителем и конечным коэффициентом усиления.


Предполагая, что нули расположены ближе к началу координат, чем полюсы, получаем следующие расчетные соотношения:

 ; ; (1.9а), (1.9б)

; Н=К (1.9в), (1.9г)

Множитель т можно выбрать произвольно.

Второй тип биквадратного фильтра реализуется одним усилителем с бесконечным коэффициентом усиления. Здесь используется операционный усилитель с дифференциальным входом. Передаточную функцию такого фильтра легко найти

 (1.10)

Если Y1+Ya+Y4=Y2+Yb+Y3 или Ya=Y2+Y3 или Yb=Y1+Y4, то (1.10) примет вид

 (1.11)

В третьем типе реализации биквадратного фильтра используются два операционных усилителя. Анализ этой схемы дает

,что совпадает с (1.11).

Рассмотрим еще одну реализацию биквадратного фильтра. В ней используются двойные Т-образные цепи в качестве пассивных компонентов. Передаточная функция фильтра по напряжению


 (1.12), где

b+2=g+e; f+2=d; T=RC. (1.13)

Из (1.8) и (1.13) получаем

; ;

;; . (1.14)

Если Н0, ωp, ωz, Qp и Qz подлежат определению, то приведенные уравнения можно разрешить относительно параметров а, Ь, е, f, g, R и С.

Для ФВЧ g=b=0, e=2, 2+f=d.


Информация о работе «Проектирование активных фильтров на интегральных операционных усилителях»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 20098
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
56083
3
30

... усилителя от приведенного ко входу ЭДС смещения ОУ2. Приведенные результаты показывают, что дрейф нуля и коэффициент ослабления синфазного напряжения определяются только мультидифференциальным операционным усилителем. Соотношения (90), (94) показывают, что основным преимуществом классической структуры инструментального усилителя (рис. 12) является независимость коэффициента передачи синфазного ...

Скачать
11355
1
9

... со строго постоянным коэффициентом передачи в полосе пропускания, бесконечным ослаблением в полосе подавления и бесконечной крутизной спада при переходе от полосы пропускания к полосе подавления. Проектирование активного фильтра всегда представляет собой поиск компромисса между идеальной формой характеристики и сложностью ее реализации. Это называется "проблемой аппроксимации". Во многих случаях ...

Скачать
44077
0
14

... даже иногда вредным. Однако превратить УПТ в усилитель переменного тока можно достаточно просто (например, вводя разделительные емкости). Поэтому большинство массовых операционных усилителе выпускаются как усилители постоянного тока. Условное обозначение ОУ приведено на рисунке 7.1. В обозначении функции (¥ > – усилитель с бесконечно большим коэффициентом усиления) первый символ (¥) ...

Скачать
24840
4
7

... целесообразно решать аппроксимационную задачу. Определим нормированную частоту ограничения фильтра, как отношение  =  = 0,6666. Нормированная частота в полосе задерживания обычного фильтра НЧ равна . Эта же частота в случае фильтра НЧ с ограниченной полосой пропускания рассчитывается по формуле Из кривых (рис. 1.) по вычисленной  и заданным  и а определим ...

0 комментариев


Наверх