4.2 Тактовый генератор
В качестве тактового генератора будем использовать микросхему КР531ГГ1. Данная микросхема удобна тем, что на выходе мы получаем стандартный сигнал ТТЛ логики и простоту управления частотой.
Микросхема представляет собой два независимых генератора, частота которых определяется напряжением.
Каждый генератор имеет два входа для управления частотой: U – управление частотой, DU – управление диапазоном частоты. Если на вход U подан высокий уровень, а на DU низкий, то для фиксации частоты следует подсоединить между входами Свн внешний элемент – конденсатор или кварцевый резонатор.
На выходах мультивибраторов получается меандр с частотой
Приведенное выше выражение справедливо только для ТТЛ серии.
По входу ЕI входную последовательность можно запретить, если подать напряжение высокого уровня.
Рис. 9. Схема подключения генератора
находим емкость, необходимая длячастоты 100Гц из уравнения:
Отсюда
Выбираем конденсатор: К10-17А М47 5000пФ, 5%
4.3 Устройство начального пуска
Устройство представляет собой RC – цепь, формирующую при включении низкий потенциал на входе сброса D – триггеров, для принудительного установления начального состояния.
Схема устройства приведена ниже:
Рис. 10 Устройство начального сброса
.
Величины элементов выбираем следующие: R25=1 кОм, С10=25 нФ.
Резистор типа: С2-29В-0.125-1кОм±1%.
Конденсатор: К50-35-25В-24нФ.
4.4 Устройство реализации функции F1
Фильтр низких частот второго порядка (F1)
F1 – ФНЧ второго порядка, fгр = 100Гц, Ку =3дБ, подъём на fгр +3 дБ, х1=+3 дБ.
Передаточная функция ФНЧ описывается следующим уравнением:
Для данного фильтра
Если
;
Для сравнения сигнала с фильтра и сравнения его с заданным воспользуемся формулой
Отсюда для сравнения будем брать величину
Для получения Uоп используем источник тока REF200 с выходом 100мкА и резистором 141 кОм.
Схема реализации функции представлена на рис. 9.
Схема реализации Uоп представлена на рис. 10.
R1 С2-23имп. 0.25 Вт, 1%, 39 кОм
R2 С2-23имп. 0.25 Вт, 1%, 56 кОм
R3 С2-23имп. 0.25 Вт, 1%, 3.9 кОм
С2-(К50-35) 0,47 мкф х 50 в,85 гр., эл-лит.конд.
С2-23 0,125/0,25 1% 1 кОм
С2-23 0,125/0,25 1% 300 Ом
C2 - К50-35-25В-0.47 мкФ
C1 - К50-35-25В-20 нФ
Устройство сравнения:
DA1 - К140УД17Б
DA – K1401CA1
ФНЧ 2-го порядка
Рис. 11. ФНЧ 2-го порядка.
Рис 12. Источник опорного нпряжения
4.5 Устройство реализации функции F2
Аппроксимирующий преобразователь.
Реализация функции F2:
Аппроксимирующий преобразователь – преобразователь реализующий принцип кусочно-линейной аппроксимации.
Рис.16 . Аппроксимирующий преобразователь.
Зависимость выходного напряжения от входного представлена на рис.17
Статическая характеристика.
На первом и втором участке преобразователь работает как услилтель:
на первом участке с коэф. усления выбираем R1=10koM
на втором участке коэф. усиления
Переход на 2 участок осущсетвляется когда выходное напряжение , тогда открываются диоды D4 и D3. переход на третий участок осуществляется за счет ограничения тока двух-анодного стабилитрона.
Операционный усилитель - TL082,
Ризисторы:
R1: С2-23имп. 0.25 Вт, 1%, 10 кОм
R2: С2-23имп. 0.25 Вт, 1%, 20 кОм
R5=R6: С2-23имп. 0.25 Вт, 1%, 430 Ом
R3=R4: С2-23имп. 0.25 Вт, 1%, 82 кОм
Стабилитроны: D1N4469
Диоды: D1N3900
Для получения Uоп используем источник тока REF200 с выходом 100мкА и резистор С2-23 0,125/0,25 82кОм.
... параметрах, а также исполнительных устройствах. Функционирование автомата производится по приведенному в задании алгоритму. 1. Структурный синтез управляющего автомата 1.1 Построение направленного графа абстрактного автомата При проектировании устройства логического управления будем ориентироваться на синхронный дискретный автомат Мура, поскольку для асинхронного дискретного автомата ...
... шара, снабженного канавками на поверхности для создания оптимальной турбулентной струи пылевозд. смеси. 1.3 Разработка структурной схемы В данном разделе необходимо представить структурную схему (рис.1.3.1) разрабатываемого нами автоматизированного блока управления пневмокамерным насосом. Структурной называется схема, которая определяет функциональные основные части изделия и связи между ...
... кодирования можно разработать устройство, которое поможет понять принцип работы метода Хэмминга. Кодер – декодер будем разрабатывать на основе ИМС К555ВЖ1. 2.1 Разработка устройства кодирования информации методом Хемминга Кодер, преобразует 32х битное слово в 38ми разрядный код Хэмминга, после чего слово хранится в памяти или передаётся по шинам и т.д. В процессе передачи или хранения в ...
... переходов автомата. 3. Проектирование алгоритма и построение абстрактного автомата арифметико-логического устройства 3.1 Задание и исходные данные Разработка арифметико-логического устройства, выполняющего операцию сложения и вычитания в прямом двоичном коде. Исходные данные: – разрядность операндов – 8 бит; – разрядность результата – 8 бит; – элемент памяти – ПЗУ; – формат ...
0 комментариев