Применение электромагнитных помещенй и замкнутых экранов для защиты от электромагнитных полей

108385
знаков
14
таблиц
13
изображений

5.3 Применение электромагнитных помещенй и замкнутых экранов для защиты от электромагнитных полей

Для локализации ЭМП внутренних источников применяются электрогерметичные помещения, аппаратные и кабины, представляющие собой замкнутые электромагнитные экраны. В таких помещениях экранируется стены, потолки, пол, оконные и дверные проемы и вентиляционные системы. Такие помещения и кабины могут использоваться для защиты и от внешних полей.

Монтаж экранов в больших помещениях производится прикреплением металлических листов (стальных, дюралюминиевых и других) непосредственно к поверхностям помещения. Размеры листов обшивки и их толщена определяются сортаментом прохода Для достижения электрической герметичности рекомендуется листы соединить внахлест, встык или в фалец.

При экранировании используются такие явления, как поглощение электромагнитной энергии материалом экрана и её отражение от поверхности экрана. Поглощение ЭМП обуславливается тепловыми потерями в толще материала и зависит от электромагнитных свойств материала экрана (электрической проводимости, магнитной проницаемости и др.). Отражение обуславливается несоответствием электромагнитных свойств воздуха и материала экрана.

Для изготовления экранов применяют либо тонкие металлические (сталь, алюминий, медь, сплавы) листы, либо металлические сетки.

Толщина экрана (D) из металлического листа выбирается, исходя из соображений механической прочности, не менее 0,5 мм, и должна быть больше глубины проникновения электромагнитных волн в толщину экрана:

 (5.1)

где г- глубина проникновения поля в проводящую среду;

μ-магнитная проницаемость материала, Гн/м;

σ- электрическая проводимость материала, см.

Большая отражательная способность металлов, обусловленная значительным несоответствием электромагнитных свойств воздуха и металла, в ряде случаев может оказаться нежелательной, так как может увеличивать интенсивность поля в рабочей зоне и влиять на режим работы генератора (излучателя). Поэтому в подобных случаях следует применять экраны с малым коэффициентом отражения специальной конструкции, так называемые поглощающие экраны.

Металлические экраны за счёт отражения и поглощения практически непроницаемы для электромагнитной энергии радиочастотного диапазона (d≥λ,где λ-длина волны).

Применение поглощающих нагрузок и аттенюаторов позволяет ослабить интенсивность излучения электромагнитной энергии в окружающее пространство на 60 дБ и более.

Для защиты от ЭМП при работе в антенном поле, проведении испытательных и регулировочных работ на объектах, устранении аварийных ситуаций и ремонте рекомендуется использование индивидуальных средств защиты. Для защиты всего тела применяются комбинезоны, халаты капюшоны. Их изготавливают из трёх слоев ткани. Внутренний и наружный слой делают из хлопчатобумажной ткани, а средний, защитный слой- из радиотехнической ткани, имеющей проводящую сетку. Для защиты глаз используются специальные радиозащитные очки (ОРЗ-5) из стекла, покрытого полупроводниковым оловом. Эффективность таких очков составляет 20-22 дБ.

5.4 Оценка уровня электромагнитного излучения на рабочем месте

Оценим уровень электромагнитного излучения на рабочем месте регулировщика радиоаппаратуры от генератора мощностью 0.1 Вт, работающего в диапазоне частот 3-4 ГГц, с точки зрения необходимости разработки мероприятий по защите персонала, если рабочее место удалено от источника излучения на расстояние 1м, а продолжительность пребывания персонала в условиях облучения за смену не превышает б часов.

Оценка уровня поля осуществляется сравнением значений плотности потока энергии на рабочем месте (так как генератор работает в диапазоне СВЧ) и предельно допустимым.

Плотность потока энергии на рабочем месте можно рассчитать по формуле:

ЛПЭр.м≈Рист/4π, Вт/м2 (5.2)

где Рист.- мощность генератора, Вт;

ч - расстояние от излучения до рабочего места,1м.

ППЭр.м ≈.0.1/(4•3,14•1)=2,35, Вт/м2.

Предельно допустимое значение плотности потока энергии, определяется по формуле:

ППЭпд=К•ЭНппз/Т,Вт/м2, (5.3 )

где К- коэффициент, равный 1, для данного условия;

Эпппз пз- максимальная энергетическая нагрузка, равна 2Вт/м2;

Т - время облучения персонала , по условиям задачи, равно бч.

ППЭпд= 1•2/6-= 0,33, Вт/м2.

Сравнивая значения ППЭ на рабочем месте (2,35 Вт/м2) и предельно допустимое (0,33 Вт/м2) делаем вывод о том, что защита персонала в данном случае необходима, так как фактическое значение ППЭ, воздействующее на регулировщика , в 3 раз превышает предельно допустимые.

Для достижения высокой эффективности экранирования рекомендуется элементы конструкции экрана сваривать непрерывным швом или применять другие сплошные соединения.

Для защиты персонала будем применять вышеописанные методы до того момента пока уровень излучения на рабочем месте не будет иметь допустимых значений.

В ряде случаев во избежание отражения энергии, образования стоячих волн и зон, где плотность ЭМП излучения может оказаться больше первоначальной плотности потока энергии создаваемой источником, стены и другие ограждающие конструкции таких помещений должны быть покрыты поглощающими материалами. В случае направленного излучения допускается применение поглощающего покрытия только тех стен, на которые направленно излучение.

При защите помещений от внешних излучений применяется склеивание стен специальными металлизированными обоями, засетчивание окон, использование специальных металлизированных штор и далее. Дпя изготовления экранных штор, чехлов и других защитных изделий, также как н для изготовления защитной одежды применяется радиотехнические ткани, в структуре которых тонкие металлические нити образуют сетку.

В качестве экранирующего материала для световых проемов, приборных панелей, смотровых окон, также как и для защитных очков применяется оптически прозрачное стекло, покрытое полупроводниковой двуокисью олова. Световые проемы или смотровые окна могут также экранироваться металлической сеткой.

При конструировании замкнутых экранов в диапазоне СВЧ иногда возникает необходимость предусматривать в них различного рода отверстий: вентиляционные окна, отверстия для проводов питания, ручек управления и так далее которые не должны нарушать электрическую герметичность экрана и снижать его эффективность.

Для ослабления излучаемой энергии через отверстия различной формы без металлических выводов через них применяются трубки предельных волноводов (по форме отверстия экрана), длины которых определяются в зависимости от необходимой величины ослабления энергии и ослабляющей способности трубки.

Коаксиальные отверстия в отличие от отверстий типа "предельный волновод " практически беспрепятственно проводят высокочастотную энергию в любом диапазоне. Один из способов ослабления излучения в коаксиальных выводах являются заполнение пространства между центральным и наружным проводниками поглощающим материалом -корбональным железом, графитом и так далее).

Просачивание высокочастотной энергии через коаксиальные отверстия можно уменьшить также путем применения специальных фильтров, простейшим из которых является фильтр, основанный на соединении встык двух коаксиальных линий с резко отличающимися волновыми сопротивлениями. Одна такая стыковка коаксиальных кабелей обеспечивается затухание по мощности более 10 дБ.

Более эффективным способом экранирования щелей в широком диапазоне частот является применением поглощающих прокладок по всей длине щели, либо обеспечение плотного электрического контакта по всему периметру щели.



Информация о работе «Усилитель мощности миллиметрового диапазона длин волн»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 108385
Количество таблиц: 14
Количество изображений: 13

Похожие работы

Скачать
21684
0
0

... шумы анализатора), называют динамическим диапазоном по комбинационным помехам . Динамический диапазон по комбинационным помехам в анализаторах спектра миллиметрового диапазона волн в основном определяются КВЧ преобразователями входных сигналов. Исторически на начальных этапах освоения мм диапазона длин волн предпочтение отдавалось гармониковым преобразователям частоты и анализаторам ...

Скачать
117222
0
10

... , то необходимость в дополнительной линии передачи вообще отпадает при передаче энергии на сотни километров, поскольку вся излучаемая энергия может быть перехвачена приемным устройством с апертурой приемлемых размеров. В диапазоне субмиллиметровых волн отношение допустимых размеров апертур к длине волны заметно уменьшается, тем не менее в ряде случаев подобные квазиоптические линии передачи могут ...

Скачать
103732
24
0

... снизить вероятность возникновения пожаров на данном объекте. ЗАКЛЮЧЕНИЕ С целью обеспечения безопасности движения речного транспорта в камере шлюза Усть-Каменогорской гидроэлектростанции в данном дипломном проекте была разработана радиолокационная станция обнаружения надводных целей, она гораздо эффективнее, чем, например система видео наблюдения. Были рассчитаны основные тактико- ...

Скачать
33320
0
11

ного слоя (рис. 2), перемещающегося вдоль образца от катода к аноду. Рис.1. Аппроксимированная зависимость дрейфовой скорости электронов от напряженности электрического поля для GaAs. Рис.2. К пояснению процесса формирования слоя накопления в однородно легированном GaAs. Под катодом понимается контакт к образцу, на который подан отрицательный потенциал. Возникающие при этом ...

0 комментариев


Наверх