5. ЦВМ с аналоговыми арифметическими устройствами
6. ЦВМ, допускающие программирование аналогового типа.
|
|
|
ЦВМ Û электрическая система согласования
Сравнительная характеристика АВМ и ЦВМ
Показатель | АВМ | ЦВМ |
Тип информации | Непрерывный | Дискретный |
Изменение значений | Величиной напряжения | Числовым значением |
Базовые операции | Арифметические операции и интегрирование | Арифметические операции |
Принцип вычисления | Высокопараллельный | Последовательно-параллельный |
Режим реального времени | Без ограничений | Ограничен |
Динамическое изменение решаемой задачи | Посредством системы коммутации | В диалоговом режиме |
Требования к пользователю | Профессиональные знания, методика моделирования | Знание основ ПО ЭВМ |
Уровень формализации задачи | Ограничен моделью решаемой задачи | Высокий |
Способность к решению логических задач | Ограничена | Высокая |
Точность | Ограничена (10-4) | Ограничена разрядностью (10-40) |
Диапазон представления чисел | 1 … 10-4 | Зависит от разрядности 10-40 … 1040 |
Класс решаемых задач | Алгебраические и дифф. уравнения. | Любые |
Специальные функции | Ограниченный набор | Неограниченный набор |
Уровень миниатюризации | Ограничен | Высокий |
Сфера применения | Ограничена | Практически любая |
Пользовательский интерфейс | Низкий уровень | Высочайший уровень |
Основные понятия теории моделирования
Пусть задана сложная дискретная система S.
|
Множество входных параметров | ||
Множество внутренних параметров | ||
Внешнее воздействие | ||
Множество выходных параметров |
Закон функционирования некоторой сложной системы в общем виде:
As – алгоритм функционирования – метод преобразования экзогенных характеристик в эндогенные (независимые в зависимые).
Система также имеет множество состояний в определенные моменты времени:
Начальное состояние:
Под математической моделью реальной системы понимается конечной множество переменных x(t), h(t), v(t) вместе с математическими связями между ними и характеристиками выходных параметров системы y(t).
Типовые математические схемы.
В практике моделирования на первоначальных этапах формализации объекта используют так называемые типовые математические схемы, к которым относятся хорошо проработанные и проверенные математические объекты.
процесс функционирования системы | типовая математическая схема | обозначение |
Непрерывно-детерминированный подход | стандартные ДУ | D-схема |
Дискретно-детерминированный подход | конечные автоматы | F-схема |
Дискретно-стохастический подход | вероятностные автоматы | P-схема |
Непрерывно-стохастический подход | система массового обслуживания | Q-схема |
Обобщенные (универсальный) | агрегативная система | A-схема |
Сложность возрастает сверху внизу. В агрегативных схемах используется иерархический подход.
Формализация и алгоритмизация процесса функционирования системы
Сущность машинного моделирования некоторой сложной системы состоит в проведении эксперимента с моделью, которая представляет программный комплекс, описывающей формально или алгоритмически поведение элементов системы в процессе её функционирования, т.е. взаимодействия друг с другом и с внешней средой.
Основные требования, предъявляемые к модели:
1. Полнота модели – модель должна предоставлять пользователю возможность получения необходимого набора характеристик, оценок системы с требуемой точностью и достоверностью.
2. Гибкость модели – модель должна давать возможность воспроизводить различные ситуации при варьировании структуры, алгоритмов и параметров модели. Причем, структура должна быть блочной, т.е. допускать возможные замены, добавления и исключения некоторых частей без переделки всей модели.
3. Компьютерная реализация модели должна соответствовать имеющимся технически ресурсам.
Процесс моделирования, включающий разработку и компьютерную реализацию модели, является итерационным. Этот итерационный процесс продолжается до тех пор, пока не будет получена некоторая модель, которую можно считать адекватной в рамках решения поставленной задачи.
Основные этапы моделирования больших систем
1. Построение концептуальной (описательной) модели некоторой системы и её формализация
2. Алгоритмизация модели и её программная реализация
3. Получение и интерпретация результатов моделирования
На первом этапе формулируется модель и строится её формальная схема. Основное назначение данного этапа – переход от содержательного описания объекта к его математической модели. Это наиболее ответственный и наименее формализованный этап. Исходный материал данного этапа – содержательное описание объекта.
1. Проведение границ между системой и внешней средой.
2. Исследование моделируемого объекта с точки зрения выделения основных составляющих процесса функционирования системы (по отношению к целям моделирования)
3. Переход от содержательного описания системы к формализованному описанию свойств процесса функционирования системы, т.е. к концептуальной модели. Переход от содержательного описания системы к её модели в данной ситуации сводится к исключению некоторых второстепенных элементов описания. Предполагается, что они не оказывают существенного влияния на ход процессов, исследуемых в системе с помощью модели.
4. Основные элементы модели группируются в блоки. Блоки I-ой группы представляют собой имитатор воздействия внешней среды. Блоки II-ой групп являются собственно моделью функционирования. Блоки III-ей группы носят вспомогательный характер для реализации I-ой и II-ой групп и для фиксации результатов моделирования.
5. Процесс функционирования системы разбивается на подпроцессы так, чтобы построение отдельных моделей подпроцессов было элементарным и не вызывало трудностей.
На втором этапе моделирования – этапе алгоритмизации модели и её машинной реализации, сформированная на первом этапе математическая модель реализуется в виде программы. Исходный материал – блочная логическая схема.
1. Разработка схемы моделирующего алгоритма.
2. Разработка схемы программы.
3. Выбор технического средства для реализации компьютерной модели.
4. Этап программирования модели (программирование и отладка).
5. Проверка достоверности модели на различных работающих тестовых примерах.
6. Составление технической документации (логические схемы, схемы программ, спецификации)
На третьем этапе (получение и интерпретация результатов) компьютер используется для проведения рабочих расчетов по готовой программе модели. Результат этих расчетов позволяет проанализировать и сделать выводы о характеристиках процесса функционирования моделируемой системы.
1. Планирование машинного эксперимента с моделью системы (активный и пассивный эксперименты). Необходимо составление плана проведения эксперимента с указанием комбинации переменных и параметров, для которых должен проводится эксперимент. Главная задача – дать максимальный объем информации об объекте моделирования при минимальных затратах машинного времени.
2. Проведение рабочих расчетов (контрольная калибровка модели)
3. Статистическая обработка результатов расчетов.
4. Интерпретация результатов моделирования, подведение итогов
5. Составление технической документации.
Различие стратегического и тактического планирования машинных экспериментов заключается в том, что в первом случае ставится задача построения оптимального плана эксперимента для достижения цели, поставленной перед моделированием (оптимизация структуры алгоритмов и параметров системы). Во втором случае, преследуются частные цели оптимальной реализации каждого конкретного эксперимента из множества необходимых экспериментов, заданных при стратегическом планировании.
Три основных класса ошибок:
1. Ошибка формализации – недостаточно подробное описание модели
2. Ошибка решения – некорректный или слишком упрощенный метод построения модели
3. Ошибка задания параметров.
Проверка адекватности модели.
Проверка адекватности модели заключается в анализе её соразмерности, а также равнозначности системы. Адекватность нарушается из-за идеализации внешних условий и пренебрежения некоторыми случайными факторами.
Считается, что модель адекватна с системой, если вероятность того, что отклонение параметров Dy не превышает некоторой предельной величины d больше допустимой вероятности.
На практике использование данного критерия невозможно, т.к.:
1. Для проектирования или моделирования системы отсутствует информация о выходной характеристики y.
2. Как правило, система оценивается не по одной, а по множеству характеристик
3. Характеристики могут быть случайными величинами или функциями.
На практике оценка адекватности обычно проводится путем экспертного анализа разумности результатов моделирования.
Выдвигаются следующие виды проверки:
1. Проверка моделируемых элементов
2. Проверка внешних воздействий
3. Проверка концептуальной модели
4. Проверка формализованной математической модели
5. Проверка программной модели
6. Проверка способов измерения и вычисления выходных характеристик
Если модель неадекватна объекту, то выдвигаются следующие типы изменения:
· Глобальные – возникают в случае обнаружения методических ошибок концептуальной или математической модели
· Локальные – связаны с уточнением некоторых параметров и алгоритмов. Выполняются путем замены внешних воздействий на эквивалентные, но более точные.
· Параметрические изменения некоторых специальных параметров, называемые калибровочными.
Завершается данный этап определением и фиксацией области пригодности модели - множество условия, при соблюдении которых точность результатов моделирования находится в допустимых пределах.
Схема взаимодействия технических этапов моделирования
Вычислительные системы как объект моделирования
Уровни проектирования:
1. Системное проектирование
Цель – определение производительности. Вычислительная система рассматривается целиком. Отдельные её элементы – ЦП, память и т.д.
ВС := <ЦП, ОП, …><ОС>
2. Функционально-логический уровень проектирования
a. Подуровень регистровых передач.
Исследование команды.
b. Логическое проектирование.
Исследование на уровне логических элементов.
3. Схемотехнический уровень.
Вопросы конкретной реализации (например, как искажается сигнал).
4. Конструкторский уровень.
Оптимизация размещений (например, теплообмен).
Проектирование происходит сверху вниз.
Моделирование на системном уровне.
При моделировании новой или модернизации действующей ВС и сетей необходимо предварительно оценить эффективность их функционирования c учетом различных вариантов структурной организации. Эти варианты могут отличаться составом и характеристиками модулей (моделей устройств), структурой межмодульных связей, режимами работы, алгоритмами управления и т.д. Именно в таких случаях используются модели ВС.
Под Вычислительным Средством понимаем комплекс аппаратных и программных средств, которые в совокупности выполняют определенные обработочные функции.
Операционная Система – набор ручных и автоматических процедур, которые позволяют группе людей эффективно использовать вычислительную установку.
Коллектив пользователей – сообщество таких людей, которые используют ВС для удовлетворения своих нужд по обработке информации.
Входные сигналы (программы, данные, команды), которые создаются коллективом пользователей, называются рабочей нагрузкой.
Индекс производительности – описатель, который используется для представления производительности системы. Различают количественные и качественные индексы производительности.
Качественные:
· легкость использования системы
· мощность системы команд
Количественные:
· пропускная способность – объем информации, обрабатываемый в единицу времени.
· время ответа (реакции) – время между предъявлением системе входных данных и появлением соответствующей выходной информации.
· коэффициент использования оборудования – отношение времени использования указанной части оборудования в течение заданного интервала времени к длительности этого интервала.
Концептуальная модель ВС включает сведение о выходных и конструктивных параметрах системы, её структуре, особенностях работы каждого элемента и ресурса, постановка прикладных задач, определение цели моделирования.
Основные задачи:
1. Определение принципов организации ВС.
2. Выбор архитектуры, уточнение функций ВС и их разделение на подфункции, реализация аппаратным и программным путем.
3. Разработка структурной схемы – определение состава устройств и способов их взаимодействий.
4. Определение требований к выходным параметрам устройств и формирования технического задания на разработку устройств для функционально-логического уровня проектирования.
Непрерывно-стохастические модели (Q-схемы).
Особенности непрерывно-стохастического подхода в дальнейшем рассматривается только на примере использования в качестве типовых математическим моделей системы массового обслуживания. Характерным для СМО является случайное появление заявок на обслуживания и завершение обслуживания в случайные моменты времени.
Основные понятия теории массового обслуживания.
Потоком событий называется последовательность событий, происходящих одно за другим в случайные моменты времени.
Поток событий называется однородным, если он характеризуется только моментами поступления этих событий (вызывающими моментами) и задается следующей последовательностью:
,
где tn – момент поступления n-ого события.
Поток событий неоднородный, если он задается не только вызывающими моментами, но и функцией f(n) – набор признаков события (наличие приоритета, принадлежащего к какому-либо типу заявки, класса и т.д.).
Если интервалы времени между событиями независимы между собой и являются случайными величинами, то такой поток называется потоком с ограниченным последействием.
Поток событий называется ординарным, если вероятность того, что на малый интервал времени Dt, примыкающий к моменту времени t, попадает более одного события, пренебрежимо мала по сравнению с вероятностью того, что на этот же интервал времени попадает ровно одно событие.
Поток стационарный, если вероятность появления того или иного события на некотором интервале времени зависит лишь от длины этого интервала и не зависит от того, где на оси времени взят этот интервал.
Для ординарного потока среднее число сообщений за интервал времени Dt равно P1 (t, Dt), тогда
- интенсивность ординарного потока.
Для стационарного потока интенсивность не зависит от времени и представляет собой постоянное значение равное среднему числу событий, наступивших в единицу времени.
В любом элементарном акте обслуживания можно выделить 2 основные составляющие:
... как точки на временной оси. Для достижения основной цели моделирования достаточно наблюдать систему в моменты реализации основных событий. Рассмотрим пример одноканальной системы массового обслуживания. Целью имитационного моделирования подобной системы является определение оценок ее основных характеристик, таких, как среднее время пребывания заявки в очереди, средняя длина очереди и доля ...
... каналов обслуживан6ия, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задача теории массового обслуживания - установить зависимость результирующих показателей работы системы массового обслуживания (вероятности того, что заявка будет обслужена; математического ожидания числа обслуженных заявок и т.д.) от входных ...
... 6. Петухов О.А. , Морозов А.В. , Петухова Е.О. Моделирование системное, имитационное, аналитическое. Учебное пособие – Санкт-Петербург 2008 7. Норенков И.П., Федорук Е.В.Имитационное моделирование систем массового обслуживания. Методические указания – Москва 1999 8. Кутузов О.И., Татарникова Т.М., Петров К.О. Распределенные информационные системы управления. Учебное пособие – Санкт-Петербург ...
... *0,1*25 – 1*,09 = 2148,2 ден.ед. Таким образом, максимальная прибыль достигается при установлении трех телефонных линий. Программа имитационного моделирования для оптимального режима работы примет вид: имитационный моделирование массовый обслуживание Результаты расчетов функциональных характеристик СМО: Характеристика Значение l 1/0,67 = 1,5 зв./мин. m 60/2=30 зв./мин. ...
0 комментариев