1.  Метод разложения случайного процесса на фазы (метод псевдосостояний)

2.  Метод вложенных цепей Маркова

Метод псевдосостояний

Суть метода состоит в том, что состояния системы, потоки переходов из которых являются немарковскими, заменяются эквивалентной группой фиктивных состояний, потоки переходов из которых являются марковскими.

Условие статистической эквивалентности реального состояния и соответствующих ему фиктивных состояний в каждом конкретном случае выбирается по-разному. В качестве одного из критериев эквивалентности можно принять следующее условие:

, где li экв(t) – эквивалентная интенсивность перехода в i-той группе переходов, заменяемой реальный переход обладающей интенсивностью li(t).

За счет расширения числа состояний системы, некоторые процессы удается точно свести к марковским. Созданная таким образом новая система по своим характеристикам статистически эквивалентна или близка реальной системе, но она должна быть обязательно подвергнута обычному исследованию на адекватность, с помощью хорошо проработанного математического аппарата с использованием уравнений Колмогорова.

К числу процессов, которые введением фиктивных состояний можно точно свести к марковским, относятся процессы, происходящие в системе под воздействием потока Эрланга.

В случае потока Эрланга k-го порядка интервал времени между сообщениями представляет собой сумму k независимых случайных интервалов распределенных по показательному закону. Поэтому сведение потока Эрланга k-го порядка к Пуассоновскому осуществляется введением k псевдосостояний. Интенсивности перехода между псевдосостояниями равны соответствующему параметру потока Эрланга.

Полученная таким образом эквивалентный случайный процесс является марковским, т.к. интервалы времени нахождения его в различных состояниях подчинены показательному закону распределения.

Пример.

Некоторое устройство S выходит из строя с интенсивностью l, причем поток отказов Пуассоновский. После отказа устройство восстанавливается. Время восстановления распределено по закону Эрланга 3-го порядка с функцией плотности. Найти предельные вероятности возможных состояний системы.

Система S может принимать два состояния:

S0 – устройство исправно

l

 
S1 – устройство отказало и восстанавливается


S0

 

m

 
S0 à S1 – Пуассоновский поток

S1

 
S1 à S0 – поток Эрланга

Представим случайное время восстановления в виде суммы 3х интервалов, распределенных по показательному закону с интенсивностью m:

S1 заменяем эквивалентной цепочкой из трех псевдосостояний.

S13

 

l

 

m

 

m

 

m

 

S12

 

S11

 

S0

 

Последние 2 уравнения являются условием нормировки и условием эквивалентности замены состояния S1 псевдосостояниями.

Метод вложенных цепей Маркова.

Вложенные марковские цепи образуются следующим образом: в исходном случайном процессе выбираются такие моменты времени tk, в которых значения характеристик процесса образует марковскую цепь. Моменты времени tk обычно являются случайными и зависят от свойств самого процесса. Исходный процесс исследуется в выбранные моменты времени с помощью стандартных методов теории массового обслуживания.

Частным случаем вложенных цепей Маркова, являются полумарковские случайные процессы. Случайный процесс с конечным или счетным множеством состояний называется полумарковским, если заданны вероятности перехода системы из одного состояния в другое и распределение времени пребывания процесса в каждом состоянии (в виде функции распределения F(t) или в виде плотности распределения f(t))


Классификация систем массового обслуживания

 

В общем случае СМО классифицируется по следующим признакам:

·  закону распределения входного потока

·  числу обслуживающих приборов

·  закону распределения времени обслуживания в обслуживающих приборах

·  числу мест в очереди

·  дисциплине обслуживания

При определении любой системы обслуживания для сокращенной записи используется следующая система кодировки, в которой на месте букв ставится соответствующая характеристика СМО:

A | B | C | D | E
A Закон распределения интервалов времени между поступлением заявок.

M – экспоненциальный

E – Эрланга

H – гиперэкспоненциальный

Г – гамма-распределение

D – детерминированное распределение

G – произвольное распределение

B Закон распределения времени обслуживания в приборах СМО.
C Число обслуживающих приборов.

1 – для одноканальных систем

l – для многоканальных систем

D Число мест в очереди. Если число мест не ограничено, то поле можно опустить.

r либо n – для конечного числа мест

E Дисциплина обслуживания. По умолчанию LIFO – в этом случае поле может опускаться. FIFO, LIFO, RANDOM

Примеры.

M | M | 1

СМО с одним обслуживающим прибором, бесконечной очередью, экспоненциальным законом распределения интервалов времени между поступлением заявок и временем обслуживания и дисциплиной обслуживания FIFO.

E | H | l | r | LIFO

CМО с несколькими обслуживающими приборами, конечной очередью, законом распределения Эрланга интервалов между поступлением заявок, гиперэкспоненциальным законом распределения времени обслуживания заявок в приборах и дисциплиной обслуживания LIFO.

G | G | l

СМО с несколькими приборами, бесконечной очередью, произвольными законами распределения времени между поступлением заявок и времени обслуживания, FIFO.

Для моделирования вычислительной системы наиболее часто используются следующие типы СМО:

1.  Одноканальная СМО с ожиданием.

·  один обслуживающий прибор с бесконечной очередью

·  является наиболее распространенной при моделировании

·  может заменить практически любой узел вычислительной системы или ЛВС

2.  Одноканальная СМО с потерями.

·  один обслуживающий прибор с конечным числом мест в очереди

·  если число заявок превышает число мест в очереди, то лишние заявки теряются

·  используется при моделировании каналов передач данных в ВС и ЛВС

3.  Многоканальная СМО с ожиданием.

·  несколько параллельно работающих обслуживающих приборов с общей бесконечной очередью

·  используется при моделировании групп абонентских терминалов, работающих в диалоговом режиме

4.  Многоканальная СМО с потерями.

·  несколько параллельно работающих обслуживающих приборов с общей очередью, число мест в которой ограничено

·  часто используется, как и (2), при исследовании каналов связи

5.  Одноканальная СМО с групповым поступлением заявок

·  один обслуживающий прибор с бесконечной очередью

·  перед обслуживанием заявки группируются в пакеты по определенном признаку или правилам

·  используется для моделирования центров коммутации


Информация о работе «Моделирование систем массового обслуживания»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 52202
Количество таблиц: 13
Количество изображений: 13

Похожие работы

Скачать
48014
3
9

... как точки на временной оси. Для достижения основной цели моделирования достаточно наблюдать систему в моменты реализации основных событий. Рассмотрим пример одноканальной системы массового обслуживания. Целью имитационного моделирования подобной системы является определение оценок ее основных характеристик, таких, как среднее время пребывания заявки в очереди, средняя длина очереди и доля ...

Скачать
20467
0
10

... каналов обслуживан6ия, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задача теории массового обслуживания - установить зависимость результирующих показателей работы системы массового обслуживания (вероятности того, что заявка будет обслужена; математического ожидания числа обслуженных заявок и т.д.) от входных ...

Скачать
94801
7
6

... 6.  Петухов О.А. , Морозов А.В. , Петухова Е.О. Моделирование системное, имитационное, аналитическое. Учебное пособие – Санкт-Петербург 2008 7.  Норенков И.П., Федорук Е.В.Имитационное моделирование систем массового обслуживания. Методические указания – Москва 1999 8.  Кутузов О.И., Татарникова Т.М., Петров К.О. Распределенные информационные системы управления. Учебное пособие – Санкт-Петербург ...

Скачать
6624
2
3

... *0,1*25 – 1*,09 = 2148,2 ден.ед. Таким образом, максимальная прибыль достигается при установлении трех телефонных линий. Программа имитационного моделирования для оптимального режима работы примет вид: имитационный моделирование массовый обслуживание Результаты расчетов функциональных характеристик СМО: Характеристика Значение l 1/0,67 = 1,5 зв./мин. m 60/2=30 зв./мин. ...

0 комментариев


Наверх