Расчет передаточных параметров оптического кабеля

Модернизация, телекоммуникационного оборудования в ЗАО "Кузбассэнергосвязь"
Выбор оборудования Выбор системы передачи и типа оптического кабеля Выбор системы передачи Выбор типа оптического кабеля Разработка структурной схемы организации связи Расположение оборудования на объектах “Кузбассэнергосвязь” Расчет параметров надежности ВОСП Расчет оптических и передаточных параметров оптического кабеля Расчет передаточных параметров оптического кабеля Расчет длины регенерационного участка Расчет коэффициента битовых ошибок BER внутризонового участка ВОСП Оценка экономической эффективности проектируемой оптической транспортной сети ЗАО «Кузбассэнергосвязь» Расчет численности производственных работников Расчет доходов от услуг связи Управление транспортной сетью Техника безопасности и жизнедеятельности Защита от статического электричества Опасность поражения электрическим током Электробезопасность Защитное заземление Пожарная профилактика
117563
знака
27
таблиц
22
изображения

8.2 Расчет передаточных параметров оптического кабеля

 

8.2.1 Расчет затухания

Затухание и потери являются параметрами, определяющими дальность передачи по оптическому кабелю и его эффективность.

Затухание световодных трактов оптических кабелей (a), характеризуется собственными потерями в световодах (ac) и дополнительными потерями, обусловленными деформацией и изгибами световодов при наложении покрытий и защитной оболочки при изготовлении кабеля (aк). Суммарное затухание равно [10]:

a = aс + aк (5.2.1)

Собственные потери волоконных световодов состоят в первую очередь из потерь поглощения (aп) и потерь рассеяния (aр).

Потери на поглощение существенно зависят от чистоты материала и при наличии посторонних примесей (aпр) могут быть значительными.

Собственное затухание рассчитывается по формуле [10]:

aс = aп + aр (5.2.2)

Затухание в результате поглощения (aп)связано с потерями на диэлектрическую поляризацию, оно линейно растет с частотой, зависит от свойств материала световода (tgδ) и определяется по формуле [10]:

, (5.2.3)

где n1 – показатель преломления сердцевины;

tgδ = 1∙10-12 – тангенс диэлектрических потерь материала

сердцевины оптического волокна;

λ - рабочая длина волны, км.

Затухание поглощения равно:

 = 0,0261 дБ/км

Затухание вследствие рассеяния (aр) обусловлено неоднородностями материала ОВ, размеры которых меньше длины волны, и тепловой флуктуацией показателя преломления.

Затухание рассеяния определяется выражением [10]:

, (5.2.4)

где Кр – коэффициент рассеяния, для кварца равен 0,6 мкм4.

Затухание рассеяния равно:

 = 0,104 дБ/км

Потери на рассеяние определяют нижний предел потерь оптического волокна.

В результате, собственные потери мощности в ОВ составят:

aс = 0,0261 + 0,104 = 0,130 дБ/км

Дополнительные потери в оптических кабелях (aк) обусловлены деформацией оптических волокон в процессе изготовления кабеля - скруткой, изгибами волокон и так далее.

В общем случае дополнительные потери определяются, как:

(5.2.5)

В процессе изготовления волокна их классифицируют по следующим семи составляющим:

a1 – возникает вследствие приложения к ОВ термомеханических

 воздействий в процессе изготовления кабеля;

a2 – вследствие температурной зависимости коэффициента

 преломления материала ОВ;

a3 – вызывается микроизгибами ОВ;

a4 – возникает вследствие нарушения прямолинейности ОВ (скрутка);

a5 – возникает вследствие кручения ОВ относительно его оси;

a6 – возникает вследствие неравномерности покрытия ОВ;

a7 – возникает вследствие потерь в защитной оболочке ОВ.

При соблюдении норм технологического процесса изготовления доминируют потери на микроизгибы.

Потери на микроизгибы и потери в защитных оболочках сравнительно невелики и составляют 0,1 дБ/км.

Расчетное суммарное затухание кабеля равно:

a = 0,130 + 0,1 = 0,23 дБ/км


8.2.2 Расчет дисперсии

При прохождении импульсных сигналов по световоду изменяется не только амплитуда импульсов, но и их форма – импульсы уширяются. Это явление называется дисперсией (τ).

Дисперсия – это рассеивание во времени спектральных или модовых составляющих оптического сигнала, которое приводит к увеличению длительности импульса оптического излучения при распространении его по ОВ, рисунок 8.2.


Рисунок 8.2 – Искажение формы импульсов вследствие дисперсии.

Полная классификация составляющих дисперсии оптического волокна приведена на рисунке 8.3.

Рисунок 8.3 – Классификация составляющих дисперсии оптического волокна.

Модовая (межмодовая) дисперсия обусловлена наличием большого числа мод, каждая из которых распространяется со своей скоростью, и имеет место только в многомодовом волокне.

Основной причиной возникновения хроматической (частотной) дисперсии является некогерентность источников излучения, реально работающих в спектре длин волн. Хроматическая дисперсия складывается из волноводной (внутримодовой) (τвв), материальной (τмат) и профильной (τпр):

 

τхр = τмат + τвв + τпр (5.2.6)

Волноводная (внутримодовая) дисперсия обусловлена процессами внутри моды. Она характеризуется направляющими свойствами сердцевины ОВ, а именно: зависимостью групповой скорости моды от длины волны оптического излучения, что приводит к различию скоростей распространения частотных составляющих излучаемого спектра.

Материальная дисперсия обусловлена зависимостью показателя преломления сердцевины и оболочки от длины волны оптического излучения.

К основным причинам возникновения профильной дисперсии относятся поперечные и малые продольные отклонения геометрических размеров и формы волокна. Они могут возникать в процессе изготовления ОВ, строительства и эксплуатации ВОЛC.

Материальную, волноводную, профильную дисперсии определим по формулам [10]:

τмат=∆λ М(λ), (5.2.7)

τвв=∆λ В(λ), (5.2.8)

τпр=∆λ П(λ), (5.2.9)

где ∆λ = 0,5 ширина спектра источника излучения, нм

(для выбранной системы передачи);

М(λ)=-18 пс/нм∙км удельная дисперсия материала;

В(λ)=12 пс/нм∙км удельная волноводная дисперсия;

П(λ)=5,5 пс/нм∙км удельная профильная дисперсия.

По формулам (5.2.7; 5.2.8; 5.2.9) рассчитаем материальную, волноводную, профильную дисперсии:

τмат=0,5 ∙ (-18)=-9 пс/км,

τвв= 0,5 ∙ 12=6 пс/км,

τпр=0,5 ∙ 5,5=2,75 пс/км

Поляризационная модовая дисперсия возникает вследствие различной скорости распространения двух взаимно перпендикулярных поляризационных составляющих моды. Главная физическая причина появления PMD – некруглость профиля сердцевины одномодового волокна.

PMD типового волокна, как правило составляет от 0,5 до 0,2 .

Поляризационная модовая дисперсия начинает сказываться только при скорости передачи выше 2,5 Гбит/с, поэтому при расчете ее не учитываем.

Результирующая хроматическая дисперсия равна:

τхр = -9 + 6 + 2,75 = - 0,5 пс/км

Полоса частот DF, пропускаемая световодом определяет объем информации, который можно передать по ОВ. Так как импульс на приеме приходит искаженным (вследствие различия скоростей распространения в ОВ отдельных частотных составляющих сигнала), то происходит ограничение полосы пропускания сигнала. Дисперсия (t) связана с полосой пропускания следующим соотношением [10]:

(5.2.10)

Определим полосу пропускания волоконного световода:

 = 880 ГГц∙км


Информация о работе «Модернизация, телекоммуникационного оборудования в ЗАО "Кузбассэнергосвязь"»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 117563
Количество таблиц: 27
Количество изображений: 22

0 комментариев


Наверх