1.5 Монохроматические волны в идеальном пространстве
Радиосигнал представляет собой сложную зависимость величин E и H от времени, спектр сигнал содержит множество частот. Если сигнал узкополосный, то его спектр сосредоточен вблизи несущей частоты и можно, в первом приближении, полагать, что колебания E(t) и H(t) имеют гармоническую форму, т.е. спектр содержит только одну частоту f, Гц (или циклическую частоту , рад/с).
Электромагнитные волны, в которых спектр колебаний содержит одну частоту, называют монохроматическими. Введение понятия монохроматических волн существенно упрощает анализ.
Предположим, что колебания распространяются вдоль одной оси z, т.е. E(t,z) и H(t,z) - функции 2-х переменных: t и z. В некоторой точке пространства z = 0 имеется источник электромагнитного поля
,
где Em - амплитуда колебаний.
Аналогично изменяется во времени и H(t,0). Считаем, что источник колебаний создает поле, которое не меняется по координатам x и y. В точке напряженность электрического поля
,
где v- скорость распространения волны, или
(1.7)
Постоянная
(1.8)
называется фазовым множителем. Если учесть, что , а длина волны
,
то
(1.9)
и имеет другое название – волновой множитель, или волновое число.
Мгновенная фаза колебаний
(1.10)
- функция времени и координаты. Если объединить в пространстве все точки, в которых колебания синфазны, т.е. , то получим поверхность равных фаз. На этой поверхности в данный момент времени значения E одинаковы. Поверхность равных фаз называется волновой поверхностью. В рассматриваемом случае волновая поверхность является плоскостью, простирающейся в пространстве бесконечно вдоль координат y и x.
Вдоль координаты z плоскость движется со скоростью
,
называемой фазовой скоростью. Из (1.10) следует что
и фазовая скорость
,
т.е. совпадает со скоростью v, определяемой (1.3).
Итак, если источник поля создает гармонические колебания в плоскости z = 0, то в идеальном диэлектрике возникает плоская монохроматическая волна, у которой векторы и изменяются по закону
, (1. 11,а)
(1.11,б)
и сдвинуты в пространстве на угол 900, фазовая скорость волны равна
,
а связь амплитуд напряженностей электрического и магнитного полей подчиняются формуле (1.5). Запишем, в каком соотношении находятся энергии электрического и магнитного полей в плоской волне.
Плотность энергии электрического поля
и учитывая (1.5), получим
Таким образом, энергия плоской волны состоит из равных долей энергии электрического и магнитного полей.
1.6 Поляризация радиоволн
Электромагнитные волны бывают поляризованными и неполяризованными. Волны называются поляризованными, если направления векторов и в пространстве могут быть определены в любой момент времени. Если же направления и изменяются во времени случайным образом, то волна называется неполяризованной. Для радиосвязи естественно использовать поляризованные волны, что даёт возможность эффективного приёма радиосигналов при известном законе изменения и в пространстве.
Виды поляризации различаются законом изменения в пространстве плоскости поляризации, т.е. плоскости, проходящей через вектора и . Если плоскость поляризации остаётся неподвижной по мере распространения волны, то такая поляризация называется линейной. Примеры линейно поляризованных волн представлены на рис.1.2.
Вектор может быть расположен под углом к плоскости х или у. В этом случае он образован суммой двух векторов:
Если векторы иколеблются синфазно во времени, то поляризация остаётся линейной. Если же антенной (при z=0) возбуждаются колебания и, сдвинутые по фазе на φ=±90º, например
то суммарный вектор Е вращается. Конец вектора (а следовательно, и ) описывает окружность с центром в начале координат. Такая поляризация называется круговой.
В случае неравенства амплитуд колебаний и поляризация становится эллиптической - рис.1.3. Круговую и эллиптическую поляризацию называют также вращающейся с левым или с правым вращением.
При распространении волны с вращающейся поляризацией концы векторов и описывают в пространстве винтовые линии.
... .php?title=%D0%92%D0%BE%D0%BB%D0%BE%D0%BA%D0%BE%D0%BD%D0%BD%D0%BE-%D0%BE%D0%BF%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%81%D0%B2%D1%8F%D0%B7%D1%8C&printable=yes - cite_note-1. 4. Спутниковая связь Спутниковая связь — один из видов радиосвязи, основанный на использовании искусственных спутников земли в качестве ретрансляторов. Спутниковая связь осуществляется между земными ...
... Так как данное соотношение не выполняется, то следует рассчитать дальность диапазона с помощью направляющих линий. 1.4 Расчет дальности связи в гектометровом диапазоне при использовании направляющих линий Дальность уверенной радиосвязи, км, между стационарными и локомотивными радиостанциями при применении направляющих линий ; (4) где Адоп – максимально допустимое затухание сигнала в ...
... локомотивные радиостанция 11 - 4400 - 4400 Итого 19,5 36841 170,5 37031 8. Расчет экономической эффективности внедрения новых устройств. Расчет экономической эффективности сводится к определению годового экономического эффекта при внедрении маневровой радиосвязи на станции Б. Оборудование станции Б устройствами маневровой радиосвязи включает: Количество ...
... радиоволн - DmW. bas (3.375 кБ), Программа расчета сетей ПРС в гектометровом диапазоне радиоволн - GmW. bas (8.290 кБ). Библиографический список 1. Художитков П.И., Золотых О.В. Системы железнодорожной связи. - Екатеринбург: УрГУПС, 1993. - 15 с. 2. Ваванов В.В. и др. Радиотехнические средства ж. д. транспорта. - М.: Транспорт, 1991. - 303 с. 3. Волков В.М., Головин ЭЛ., Кудряшов ...
0 комментариев