1.2. Вплив зміни координації на оптичні властивості халькогенідів

Багато із спостережуваних оптичних властивостей халькогенідів можна пояснити змінами координаційного числа. Як передбачається в цій моделі, внаслідок електрон-фононної взаємодії виявляється енергетично вигідним електронне спарення на дефектах, які в тому випадку коли вони нейтральні (D°), мають орбіталі, що містять один електрон. Таким чином, реакція 2D0→D++ D- є екзотермічною. Тут D+ - пустий дефект, а D- - дефект, що має два електрони.

Халькоген з подвійною координацією містить чотири р-електрони, два з яких знаходяться на зв'язуючих орбіталях, а два інші утворюють окрему пару. Відповідно, дефект " D- " має місце тоді, коли один зв'язок руйнується і зовнішній електрон завершує утворення другої окремої пари. Можливе також утворення дефекту D+, якщо два електрони вилучити із D-, залишивши пусту орбіталь окремої пари. Але якщо D+ утворює сильний зв'язок з сусіднім халькогенідом, перетворюючи D+ в тричі координований стан, то виділяється енергія. Відповідно, виділенням енергії при зміні характеру зв’язку між D+ і D- обумовлено електрон-фононну взаємодію, яка переборює енергію електронного відштовхування в D- і робить енергетично вигідним спарення електронів. Конфігурація зв’язків цих двох станів зображена на мал.6. Загальне число зв'язуючих електронів і електронів окремих пар таке ж, як і в ідеальній структурі, тому енергія утворення пари D+ і D- мала порівняно з енергією руйнування зв'язку.

Електронні стани, пов'язані з дефектами, зображено на мал.7. Оскільки D+ утворює зв'язок з трьома іншими атомами, зовнішній електрон у D+ повинен посідати антизв'язуючий стан в зоні провідності. Такий центр діє, як донор з кулонівською енергією зв’язку Е+. Але в разі утворення D0 електрон-фононна взаємодія понижує енергію донора ще на величину Е+ + Ξ+, в результаті донорний рівень має глибину Е+ + Ξ+. Таким же чином можна довести, що D- буде акцептором, який зв'язує дірку з енергією Е- - Ξ-. Відносні величини Ξ+ + Ξ- залежать від того, наскільки велика енергія зв'язку, що виділяється, за період поки приєднується перший електрон, порівнянно з тим, коли добавляється другий електрон. Зрозуміло, шо дефекти амфотерні, так як D0 - і нейтральний донор, і нейтральний акцептор, а скло поводиться як повністю скомпенсований напівпровідник.

Оптичне збудження таких станів природно описується діаграмою в конфігураційних координатах (мал.8), коли ΞР приймає значення Ξ+ і Ξ- для D+ і D-.

Таким чином, виникають вклади в коефіцієнт поглинання виду, що описується формулою:

ά (hν) = const∙exp[(-Ea-hν)2 2 ],

де ρ2 = 2 ΞР0Еа = Ер+ ΞР, Ер - енергія переходу з нульовими фононами. При. цьому поглинання пропорційне концентрації дефектів. На мал.7 зображено деталі цих оптичних (і термічних) переходів. Суцільними лініями показано енергії глибоких донора і акцептора, штриховими - енергії, що відповідають максимальній імовірності переходу для процесів поглинання і випромінювання. Правда, ці заряджені дефекти впливають також на матричні елементи для переходів між нелокалізованими станами поблизу країв рухливості, створюючи флуктуації потенціалу.


РОЗДІЛ 2 ФОТОІНДУКОВАНІ ЗМІНИ ОПТИЧНИХ ПАРАМЕТРІВ ТОНКИХ ШАРІВ НЕКРИСТАЛІЧНИХ ХАЛЬКОГЕНІДІВ

 

2.1. Структурні одиниці та фізико-хіміні особливості некристалічних халькогенідів

 

Структура склоподібних і аморфних халькогенідів може бути описана на основі деяких даних про структуру ближнього порядку. Здатність атомів утворювати різні типи хімічних зв'язків спричинює виникнення структурних елементів визначеної симетрії, які збігаються з областями ближнього порядку. Вивчення взаємозв'язку між макроскопічними властивостями і структурними параметрами-характеристиками хімічних зв'язків є достовірним методом класифікації хімічних складів, так як зміна властивостей у відомих межах може інтерпретуватися як передумова структурної хімічної поведінки атомів і груп, що беруть участь у побудові системи. Однак часто, крім композиції, на побудову системи впливає і режим отримання тонких шарів. Як результат, напилена плівка часто являє собою сукупність метастабільних фаз, що поступово релаксують до найбільш рівноважної, характерної для даної композиції.

Дослідження впливу складу на формування структури плівки чітко можна простежити на бінарних сполуках системи Аs-S [6]. Аналізуючи спектр КРС як один з найнадійніших методів визначення структури, можна простежити за зміною структурних одиниць, які викликають зміну фізико-хімічних параметрів.

Як видно із зображених на мал.9 спектрів КРС плівок, що збагачені надстехіометричною сіркою, із зростанням вмісту сірки має місце послідовне зростання інтенсивності дуплету 470-490 см-1. Дуплет 470-490 см-1 спостерігаємо і в КРС-спектрах об'ємних стекол, збагачених сіркою. Крім дуплету, при 470-490 см-1 у коливальних спектрах плівок чітко простежується досить інтенсивні смуги при 150 і 280 см-1. Інтенсивність смуги при 470см-1 із збільшенням вмісту сірки зростає, тоді як при 490см-1 смуга поступово замивається.

Мал.9. Спектри КРС свіжоприготовлених (рівноважний режим) плівок Аs44S56 (1), Аs40S60 (2), Аs30S70 (З) і об'ємного стекла Аs20S80 (4) [5].

Вважається, що низькочастотна смуга (470 см-1) розглядуваного дуплету обумовлена кільцями S8, в той час як високочастотна компонента (490 см-1) Може приписуватись коливанням S-S зв'язків, полімеризованих у сітку скла у вигляді молекул S2 або утворень з більшою протяжністю - ланцюжків. Враховуючи те, що зона структурної кореляції стекол із надлишком сірки збільшується (для Аs20S80 до 9А), можна очікувати формування великих структурних одиниць (зміна проміжного порядку) в збагачених сіркою складах порівняно з стехіометричними. У складах, збагачених атомами з меншим координаційним числом, тобто сіркою, молекулярні структурні одиниці АsS3 (що являють собою основу для стехіометричної сполуки) зв'язуються додатковими атомами сірки. Атоми миш'яку є точками, де відбувається перетин або розгалуження ланцюжків атомів сірки, Така модель розгалуджених ланцюжків допускає також існування дискретних молекулярних утворень, наприклад кілець S8, при досить високому вмісті халькогену.

Спектри КРС для складів, збагачених миш'яком, складніші порівняно із спектром КРС при надлишку сірки (мал.9). Із збільшенням вмісту миш'яку з'являються не тільки такі смуги, що мають місце в стехіометричному склі Аs2S3, наприклад основна мода при 340 см-1, але й ряд нових ліній. Серед останніх найбільш різко виділяються лінії з частотами 132, 165, 185, 220, 232см-1. Лінії близьких частот спостерігаються також в кристалічному реальгарі ά-Аs4S4. В той же час відхилення від стехіометрії в бік збагачення миш'яком зумовлює деяке розмиття (порівняно із свіжоприготованими шарами спектра КРС плівок). Зазначимо, що спектри рівноважних плівок з надлишком миш'яку, які під дією світла темніють, суттєво не відрізняються від КРС-спектрів стекол аналогічного складу. В стеклах, що містять до 43ат.% миш'яку, не виділяються кристалічні фази, про що свідчать результати електронно-мікроскопічних досліджень, хоч КРС-спектри і вказують на наявність молекул Аs4S4. У стеклах х<57ат% молекули Аs4S4 кластеруються, утворюючи кристалічні області Аs4S4, тоді як в стеклах з меншим вмістом Аs ці молекули дисперговані в матриці скла.

Аналіз КРС-спектрів свіжонапиленої (невідпаленої) плівки Аs2S3 показує, що всі властиві їй спектральні особливості (за винятком смуг при 470-490 см-1) присутні і в збагачених миш'яком складах, отже пов'язані з молекулярними структурними одиницями, характерними для цих складів.

Суттєвим є той факт, що не для кожного складу можна визначити однозначно найбільш підходящий тип структури. Так, для Аs50S50 можна навести шість топологічно різних конфігурацій. Всі вони задовільняють умові мінімуму гомогенних зв'язків. Різняться вони лише порядком розташування цих зв'язків. Відмінності між цими конфігураціями спостерігаються в розподілі пірамідальних структурних одиниць АsS3, АsS2Аs, АsSАs2 . Кожна з конфігурацій є метастабільною, тобто невелике порушення структури (наприклад, розрив двох зв'язків Аs-S та утворення зв'язків Аs-Аs та S-S) збільшує енергію (і нерівноважність) системи, в результаті вона прагнутиме повернутись до одного з метастабільних станів. Але, на відміну від Аs4S6, в цьому випадку не можна однозначно передбачити результат релаксації системи, не знаючи її початкового стану. Перебудова структури може призвести до будь-якої з цих конфігурацій. Кожна з них має свій локальний мінімум енергії, і система може перебувати в будь-якому з цих станів невизначено довго. Більше того, з допомогою зовнішніх факторів можна перевести систему в інший метастабільний стан, у якому вона залишиться і після припинення дії цих факторів, оскільки відділена енергетичним бар'єром від інших станів. Кожний із цих станів має свої значення фізичних параметрів, а сильна залежність структури від режиму одержання, умов обробки матеріалу, очевидно, служить поясненням розбіжностей в результатах, одержаних різними дослідниками при визначенні деяких параметрів.


Информация о работе «Оптичні властивості некристалічних напівпровідникових халькогенідів»
Раздел: Физика
Количество знаков с пробелами: 54900
Количество таблиц: 0
Количество изображений: 4

0 комментариев


Наверх