№1 Электростатика – раздел физики, изучающий электрические заряды тел и их взаимодействие между собой. Закон Кулона: «сила взаимодействия между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам и обратно пропорциональна квадрату расстояния между ними»: F = k·׀Q1·Q2׀/r². (Кл). Закон сохранения заряда: «алгебраическая сумма электрических зарядов любой замкнутой системы остаётся неизменной, какие бы процессы не происходили внутри этой системы». Электрическое поле – поле, посредством которого взаимодействуют электрические заряды. Напряжённость эл. поля – векторная величина, равная отношению силы, действующей на положительный точечный заряд, помещённый в данную точку, к этому заряду. Е=1/ 4πε0·q1/r² (Н/Кл, В/м).

 

№2 Работа по перемещению заряда в электрическом поле: работа сил электрического поля представляют разностью потенциальных энергий, которыми обладает точечный заряд в начальной и конечной точках поля заряда. А12=1/4πε0·qq0/r1-1/4πε0·qq0/r2 = U1-U2. Потенциал – физическая величина, определяемая потенциальной энергией единичного положительного заряда, помещённого в эту точку: φ= 1/4πε0·q/r. Потенциал – физическая величина, определяемая работой по перемещению единичного положительного заряда при удалении его из данной точки в бесконечность: φ=Абесконечность/q0 (В). Разность потенциалов двух точек 1 и 2 – работа, совершаемая силами поля, при перемещении единичного положительного заряда из точки 1 в точку 2: φ1-φ2 = интеграл от 1 до 2 по Еdl = интеграл от 1 до 2 по Еldl.

 

№ 3 Проводники – тела, в которых электрический заряд может перемещаться по всему его объёму. Виды: проводники 1-го рода (металлы) – перенесение в них зарядов (свободных электронов) не сопровождается химическими превращениями, проводники 2-го рода (растворы кислот) – перенесение в них зарядов (положительных и отрицательных ионов) ведёт к химическим изменениям. Диэлектрики (стекло) – тела, в которых практически отсутствуют свободные заряды. Полупроводники (кремний) – занимают промежуточное положение между проводниками и диэлектриками. Поляризация – процесс ориентации диполей или появления под действием электрического поля ориентированных по полю диполей. Электронная поляризация (деформационная) с неполярными молекулами заключается в возникновении у атомов индуцированного дипольного момента за счёт деформации электронных орбит. Ориентационная поляризация (дипольная) с полярными молекулами заключается в ориентации имеющихся дипольных моментов молекул по полю. Эта ориентация тем сильнее, чем больше напряжённость электрического поля и ниже температура. Диэлектрическая проницаемость – величина, показывающая, во сколько раз поле ослабляется диэлектриком, характеризуя количественно свойство диэлектрика поляризоваться в электрическом поле.

 

№ 4 Электроёмкость определяется зарядом, сообщение которого проводнику изменяет его потенциал на единицу С = q/φ. Она зависит от формы и размеров проводника, но не от заряда и потенциала. Конденсатор – устройство, обладающее способностью при малых размерах и небольших относительно окружающих тел потенциалах накапливать значительные по величине заряды, то есть обладать большой ёмкостью. Он состоит из 2-х проводников, разделённых диэлектриком (2 плоские пластины, 2 цилиндра, 2 сферы). В зависимости от формы проводников конденсаторы бывают плоские, цилиндрические и сферические. Ёмкость плоского конденсатора – физическая величина, равная отношению заряда, накопленного в конденсаторе, к разности потенциалов между его проводниками: С = q / (φ1-φ2). Соединения конденсаторов: 1) параллельное (φА - φБ = const, U1=U2=…=Un, q=q1+q2+…+qn, C = ΣCi).

2) последовательное (U = q/C = U1+U2+…+Un, q=СU=C1U1=CnUn, 1/C = Σ1/Ci, ∆φ = Σ∆φi).

 

№ 5 Постоянный ток – ток, сила и направление которого не изменяются со временем: I=q/t. (А). Плотность тока – физическая величина, определяемая силой тока, проходящего через поперечное сечение проводника , перпендикулярного направлению тока: j = I/S (А/м²). Закон Ома для участка цепи: «сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка» I=U/R (А). Соединения сопротивлений: 1) параллельное (I=I1+In, U=Un, 1/R=1/R1+1/Rn), 2) последовательное (I=In, U=U1+Un, R=R1=Rn).

 

№ 6 Закон Ома для полной замкнутой цепи: «сила тока в замкнутой цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению цепи». I = Е/(R+r). Е-электродвижущая сила - отношение работы сторонних сил по перемещению заряда вдоль контура к величине этого заряда. Работа электрического тока: А = UIt = Uq = I²Rt (Вт·ч) – произведение силы тока на напряжение и на время протекания тока по цепи. Мощность тока: P = A/t = IU (Вт) – отношение совершённой работы ко времени, в течение которого эта работа была совершена.

 

№ 7 Электролитическая диссоциация – распад молекулы растворённого вещества в результате взаимодействия их с молекулами растворителя (рекомбинация). Степень диссоциации молекул – отношение числа диссоциированных молекул к общему числу растворённых молекул в растворе: α = n/n0. Она зависит от: 1) природы электролита и растворителя, 2) температуры: она прямо пропорциональна Т, 3) концентрации: она обратно пропорциональна С. Слабые растворы почти полностью диссоциированы. Электролиз: положительные катионы подходят к катоду, получают от него недостающие электроны и выделяются на катоде в виде нейтральных атомов. Отрицательные анионы отдают аноду лишний электрон и выделяются в виде нейтральных атомов (радикалы). Ионы металла покрывают металлическим слоем. Ионы газа выделяются. Явление электролиза – выделение на электродах вещества электролита в результате разложения вещества электрическим током. Законы Фарадея: I з-н: «количество вещества, выделившееся на электроде пропорционально заряду или количеству электричества, прошедшему через электролит»: m=kq. II з-н: «электрохимический эквивалент пропорционален химическому эквиваленту, то есть прямо пропорционален атомному весу и обратно пропорционален числу, выражающему его химическую валентность»: k=χ/F, χ-химический эквивалент (каппа): χ=A/z, А-атомный вес, z-валентность. Объединённый з-н Фарадея: m = 1/F·A/z·q, (m = 1/F·A/z·It). F - число Фарадея, F= 96500. Это количество электричества, прошедшее через электролит, если на электродах выделится вещество в количестве, равном одному химическому эквиваленту.

 

№8 Клетка — основная биологическая структурная единица, элементарная живая система. В клетке происходит: 1) Химич. метаболизм и биосинтез, 2) Аккумуляция энергии и её преобразование из химич молекулы АТФ в химич. и механич. работы. Все энергетические и биосинтетические функции клетки возможны в открытых неодноместных системах: 1) внутри клетки должен сохраняться определённый химич. состав и структура, то есть она должна быть упразднена от внешней среды, 2) но должен происходить транспорт веществ в клетку и из клетки. Обе эти функции выполняет биологическая мембрана – полупроницаемая мембрана, отделяющая клетку от внешней среды. Мембрана не является пассивной оболочкой. Она принимает прямое и очень важное участие во всех функциях клетки. Мембрана – двойной липидный слой, в котором имеются одиночные белковые молекулы. Молекула липида состоит из отрицательной или положительной гидрофильной головки и нейтрального гидрофобного хвоста. Белки похожи на липидный слой. Степень погружения белков различна. 20-30% поверхности мембраны свободны от белков. В мембране имеются каналы, через которые происходит диффузия молекул и ионов. Перенос веществ может происходить без затраты энергии клетки (пассивный транспорт) и за счёт энергии, выделяемой в клетке молекулами АТФ (активный транспорт). Пассивный транспорт обусловлен осмосом, диффузией и облегчённой диффузией. p = g·q·h – осмотическое давление. Проникновение растворителя в раствор через полупроницаемую перегородку называется осмосом. Давление, которое растворённое вещество оказывает на полупроницаемую перегородку, назыв. осмотическим и определяется формулой Вант-Гоффа: pосм. = с·RT/M. c – концентрация раствора. Растворы с одинаковыми осмотич. давлениями назыв. изотоническими. Высокое осмотич. давление назыв. гипертоническим, а меньшее – гипотоническим. Диффузия - явление самопроизвольного переноса вещества из области с большей концентрацией в область с меньшей концентрацией. В клетках и тканях ускорение свободной диффузии достигается увеличением поверхности переноса и градиента концентрации. Облегчённая диффузия – диффузия через липидный бислой в с помощью переносчиков или через каналы. Перенос молекул и ионов против электрохимического градиента, осуществляемый клеткой за счет энергии метаболических процессов, называют активным транспортом. Активный транспорт присущ только биологическим мембранам, благодаря ему в течение всей жизни организма сохраняется пространственная гетерогенность (отличие внутриклеточной среды от внеклеточной, отличие одних клеток от других). Активный перенос вещества через мембрану происходит за счет свободной энергии, высвобождающейся в ходе химических реакций внутри клетки.


№ 1. Гидродинамика. Ур-ние неразрывности потока. Ур-ние Бернулли. Работа пульверизатора и водоструйного насоса

 

Гидродинамика – раздел механики, изучающ дв-ие несжимаемой жидкости и её взаимодейств с окружающ твёрдыми телами. Идеальная жидкость – несжимаемая жидкость, плотность которой во всех точках потока остаётся постоянной; не вязкая жидкость, пренебрегают трением слоёв жидкости. Линия, касательная, в каждой точке, которая указывает направлен скорости жидкости в этой точке наз.–линией тока. Линии тока не пересек-ся между собой. Если вектор скорости остаётся постоянным в кажд точке пространства, то такое течение наз-ся стационарным. Часть жидкости, ограниченная линиями тока наз. – трубкой тока.

S1V1=S2V2 - Ур-ние неразрывности потока – для данной трубки тока произведение площади поперечного сечения трубы на скорость течения жидкости есть величина постоянная. Ур-ние Бернулли (закон сохранения энергии для жидкости).

Физич величина, определяемая нормальной силой, действующ со стороны жидкости на единицу площади наз – давлением. 1Па = давлению, создаваемому силой в 1Н равномерно распределяющемуся на поверхности площадью 1м² перпендикулярно к ней. (gύ²1/2)+gqh1+p1=(gύ²2/2)+gqh2+p2 gύ²/2– удельная кинетическ энергия или гидродинамическ давление, обусловленное скоростью жидкости. gqh- удельная потенциальн энергия или гидростатическ давление, или весовое давление, обусловленное высотой подъёма жидкости. p- статическое давление, обусловленное внешними силами.

Полное давление, равное сумме гидродинамического, весового, статического давлений в любой части потока есть величина постоянная. Существуют приборы, которые работают на основе Бернулли. Пульверизатор, водоструйный насос. Пульверизатор состоит из вертикальной трубки и горизонтального сопла. Вертикальная трубка опущена в жидкость, а по соплу подувают воздух. Давление в струе воздуха, протекающего над отверстием трубки, меньше атмосферного. Поэтому атмосферное давление заставляет жидкость подниматься по вертикальной трубке. Попадая в струю воздуха, жидкость распыляется. Для увеличения эффективности пульверизатора сечение конца сопла делают меньше сечения остальной его части, вследствие чего скорость потока воздуха на выходе из сопла увелич-ся и всасывающее действие струи воздуха возрастает. Водоструйный насос – резервуар, в который впаяны 2 трубки. В 1-ю трубку под давлением протекает вода, попадая во 2-ю трубку. В суженой части 1-й трубки давление понижается и становится меньше атмосферного. Поэтому в резервуаре создаётся разряжение. Трубку присоединяют к резервуару, который идёт в сосуд, из которого необходимо откачать воздух. Насос служит для получения небольших разряжений.

 

№ 2. Течение вязкой жидкости. Уравнение Ньютона и Пуазейля

При течении реальной жидкости отдельные её слои движутся с разной скоростью, взаимодействуя друг с другом силами, касательными к слоям жидкости, которые препятствуют перемещению одной части жидкости относительно другой. Это явление наз-ся внутренним трением или вязкостью.

Проявление сил внутреннего трения объясняется разной скоростью слоёв и тепловым движением молекул. Перепад скорости по оси х перпендикулярно движению жидкости наз.- градиентом скорости по оси х. Градиент скорости показывает, как быстро меняется скорость при переходе от слоя к слою по направлению х перпендик. направл. слоёв. Закон Ньютона для вязкой жидкости: F- градиент скорости; dv/dx- градиент скорости по оси х; S- рассматриваемая площадь поверхности слоёв; - коэффициент пропорциональности, который зависит от рода жидкости и наз.- динамической жидкостью. Знак «-» показывает, что сила вязкого трения направлена против скорости жидкости. =1ПА*С – динамическая вязкость среды, в которой при ламинарном течении и градиенте скорости с модулем 1м/сна 1м возникает сила внутреннего трения в 1н на 1м^2 поверхности касания слоёв. Бывают жидкости: ньютоновскими - если коэффициент вязкости зависит от температ. и не зависит от градиента скорости и перепада давления в сосуде, то жидкость ньютоновская. Неньютоновская - если коэффициент вязкости зависит от градиента скорости и перепада давления в сосуде, то жидкость неньютоновская. Кровь – неньютоновская жидкость – это вязкая жидкость, суспензия красного цвета, состоящая из плазмы и содержащихся в ней кровяных телец. Ур-ие Пуазейля: R-радиус трубы, - коэффициент вязкости; - градиент давления по длине трубы. гидравлическое сопротивление. Чем больше гидравлическое сопротивление, тем меньше расход жидкости.

№ 3. Ламинарное и турбулентное течение. Методы измерения давления крови

Сущ-ют 2 режима движения жидкости. Течение вязкой жидкости может быть ламинарным или турбулентным. Ламинарное движение – течение жидкости, при котором отсутствует перемешивание соседних слоёв потока. Оно стационарное. Для него справедливо ур-ние Бернулли и Пуазейля. Причиной того, что слои жидкости не перемешив-ся, явл-ся разница между скоростями слоёв жидкости в соответствии с законами Бернулли. Между слоями возникает разность давлений, и частицы жидкости переходят из слоёв, где давление больше, в слои, где давление меньше. Ламинарное течение энергетически более выгодно. Турбулентное движение – не стационарное, в кажд. точке скорость меняется, сопровождается звуковым сигналом. При увеличении градиента скорости и самой скорости возникают большие поперечные перепады давления, слои жидкости завихряются. Число Ренольса: Re = (ρ·ύср·d)/ή , где ρ.– плотность жидкости, ύср – средняя скорость жидкости по трубе, d – диаметр трубы, ή – коэффициент вязкости. Если число Ренольса < 1000, то движение ламинарное, если > 1000, но < 2000, то переход от ламинарного к турбулентному, если > 2000, то турбулентное движение. Методы измерен давления крови: 1) непосредственный – связан с потерей крови и болевыми ощущениями. При этом у животных артерию обнажают, надрезают и в разрез вводят изогнутую трубку (канюлю), представляющ. собой трубку Пито. Её соединяют с манометром, позволяющим вычерчивать кривую изменения давления крови в артерии. 2) манжетный – основан на прослушивании шумов, создаваемых пульсовыми волнами. 3) эффект Доплера – под манжетку на поверхность тела накладывают излучатель и приёмник ультразвука. На артерию направляют ультразвуковую волну. Когда давление в манжете становится меньше систолического, артерия разжимается и стенки её начинают двигаться, и при отражении ультразвуковой волны от движущейся стенки происходит изменение частоты ультразвука (эффект Доплера), который воспринимается спец прибором. Давление в манжете после эффекта Доплера соответствует диастолическому давлению. 4) электронные измерители давления.

 

№ 4. Сила Стокса. Методы измерения коэффициента вязкости методом Стокса и капиллярного вискозиметра

 

Метод Стокса: для более вязких жидкостей используют вискозиметры, основанные на измерении скорости падения в жидкости маленьких шариков. Закон Стокса: сила сопротивления Fс (сила Стокса), действующая на шарик при движении его с небольшой скорости в неограниченной вязкой жидкости (при большом удалении его от стенок сосудов), пропорциональна радиусу шарика, коэффициенту вязкости шарика R и скорости движения шарика Fc=6πήRύ. Пусть в жидкости падает шарик массой m. На него действуют сила тяжести mg=ρVg=(4/3)πR³ρg (ρ-плотность материала шарика), выталкивающая архимедова сила Fа=ρжVg=(4/3) πR³ρжg (ρж-плотность жидкости), сила Стокса, под действием которых шарик приобретает ускорение ma=mg-Fа-Fс. По мере падения шарика скорость его возрастает, что приводит к возрастанию силы Стокса. Через определённое время шарик достигает такой скорости, при которой его ускорение делается равным нулю и движение шарика становится равномерным. mg=Fa+Fc, или 4/3πR³g (ρ-ρж)= 6πήRύ. Отсюда коэффициент вязкости: ή=2/9·((ρ-ρж)/ύ)·gR². Метод капиллярного вискозиметра: в основе его закон Гагена-Паузейля. Вискозиметр представляет собой U-образную трубку, одно из колен которой имеет капилляр, чтобы поток жидкости в нём был ламинарным. Определённый объём исследуемой жидкости вливают в широкое колено прибора, а затем с помощью груши засасывают жидкость через колено с капилляром так, чтобы уровень жидкости поднялся выше отметки А. Затем, убрав грушу, наблюдают за движением жидкости в этом колене. Когда уровень её проходит через отметку А, включают секундомер, а когда жидкость проходит через отметку Б, секундомер выключают. Так узнают время t движения фиксированного объёма жидкости V через капилляр. Движение происходит под действием гидростатического давления p1-p2=ρgh, h-разность уровней жидкости в двух коленах прибора. Коэффициент вязкости исследуемой жидкости:

 

№ 5. Физические закономерности движения крови в сосудистой системе. Атеросклероз. Пульсовая волна

 

Гемодинамика – раздел биофизики, использующий законы гидродинамики для описания движения крови в сердечнососудистой системе. Сечение капилляров в 800 р больше, чем сечение аорты. Скорость в капиллярах в 1000р меньше, чем в аортах. Вся жизнедеятельность человека проходит через капилляры. Аорта и артерия имеют эластичные стенки из коллагенов. Выходя из аорты, кровь движется далее по разветвляющимся элементам кровеносной системы и, попадая в капилляры, выполняет свою основную ф-ю – снабжает кислородом кл тканей и забирают от них продукты метаболизма. Часть кинетической энергии жидкости переходит в потенциальную энергию упругих деформированных стенок, далее пульсация прекращается, клапан закрыт. Но внутренние стенки гонят кровь. Часть потенциальной энергии стенок тратятся на передвижение жидкости, т.е.переходит в кинетическую энергию, а часть переходит в потенциальную энергию соседних деформированных участков трубы. Деформация стенок распространяется вдоль сосуда и образует пульсовую волну. Скорость пульсовой волны - E – модуль Юнга для материала, из которого сделана труба; D и d –её внешний и внутренний диаметр; p – плотность жидкости в трубе. Скорость волны не связана со скорость крови. Скорость пульсовой волны = 10м/с больше скорости крови. Атеросклероз – утолщение или уплотнение стенок артерий, что ведёт к потере эластичности и сужению просвета, а это в свою очередь к нарушению равномерности потока крови, ухудшению снабжения питательных вещ-в кл. т.к.расход крови должен оставаться постоянным, то с уменьшением радиуса сосуда растёт давление, что приводит к гипертонии. В нормальных усл. течение крови ламинарное, оно может переходит в турбилярное при нарушении. Например: сужение сосудов, при не полном открытии или закрытии клапанов сердца, появление сердечных шумов, сильных ударов при прослушивании. При ламинарном течении шумов нат.

№ 6. Сердце как механическая система

Сердце явл. осн. источником энергии обеспечив. движ-е крови в сосуд. системе. Оно переводит хим. энергию, заключённую в молекулах АТФ, ОБРЗУЮЩИХСЯ В СЕРДЕЧНой МЫШЦе, в мех.работу, т.е. представляет собой хемоэлектромехан. насос. 2 половинки связаны кровен. сосудами. Сокращение сердечной мышцы создаёт разность давления в артериальной и венозной системе, благодаря сему возникает дв-е крови. Фаза сокращения сердца наз-ся систолой, фаза ослабления – диастолой. Работа за одно сокращение – работа на преодоление вязкости в сосудистой системе. Е1-Е2 =А, где А - работа сердца, Е1 – энергия аорты, Е2 – энергия вены. Объём крови, выбрасываемый сердцем в минуту наз-ся минутным объёмом кровотока, котор. равен систолическому объёму, умноженному на число сердечных сокращений в минуту. А=V·(ρ1+(ρ·ύ²)/2), ρ – разность между систолическим и диастолическим давлениями, ύ – скорость изгнания крови из сердца, ρ – плотность крови. Скорость и давление в аорте больше чем в вене. В малом круге кровообращения кровь встречает значительно меньшее сопротивление, чем в большом круге, следовательно, скорость большая, а плотность маленькая. Давление в правом желудочке равно 1/5 давления в левом желудочке. А=Аб.кр.+Ам.кр., А=6/5·ρлев.жел.·V+ρ·ύ²·V, ρ=1,05·10³ кг\м³,V=580 мг, ύср=0,5 м\с. ρлев.жел=3990 Па, А=2,93Дж.

 

№ 7. Колебания. Условия возникновения колебаний. Гармонические колебания и их характеристики. Скорость и ускорение

 

Колебания – движения или процессы, которые повторяются во времени. Условия возникновения колебаний: 1) наличие устойчивого положения системы, т.е. возникновение возвратной силы при отклонении системы из состояния равновесия. 2) наличие энергии у системы. 3) силы трения должны быть достаточно малы. Гармонические колебания – колебания, при которых колеблющиеся величины (скорость, ускорение) изменяются со временем по закону синуса или косинуса. S=A·cos(ωt+φ). Характеристики: Период колебаний Т – минимальный промежуток времени, через который повторяется колебание. Амплитуда колебаний А – максимальное отклонение тела от положения равновесия. Частота колебаний ύ – число колебаний за единицу времени: ύ=1/T (Гц). Циклическая частота ω – число колебаний за 2π в секунду: ω = 2πύ = 2π/T (Гц). Начальная фаза колебаний – φ.

 

№ 8. Затухающие, вынужденные колебания. Резонанс. Период математического и пружинного маятников

 

Затухающие колебания – колебания, которые затухают с течением времени при понижении амплитуды из-за потерь энергии колебательной системы. Благодаря силе трения мех энергия переходит в тепловую энергию. Затухающие и незатухающие колебания происходят под действием внутренних сил, без действия внешней периодической силы и называются свободными. Частота свободных колебаний наз. собственной частотой колебания системы. Вынужденные колебания – колебания тела, возникающие под действием периодически изменяющейся силы. Система совершает колебания с частотой вынужденных колебаний. Резонанс – явление резкого возрастания амплитуды вынужденных колебаний при совпадении частоты изменения внешней силы, действующей на систему, с частотой собственных колебаний. Он зависит от трения среды (чем трение меньше, тем больше резонанс). Математический маятник – идеализированная система, состоящая из материальной точки m, подвешенной на невесомой нерастяжимой нити, и колеблющаяся под действием силы тяжести. (шарик на нитке). T=2π·корень из l/g (c) – период, l – длина маятника. Пружинный маятник – груз массой m, подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы. T=2π·корень из m/k (с) – период, k – коэффициент упругости, m – масса груза.


№ 9. Волны в упругой среде. Длина волны. Интенсивность волны. Скорость волны

 

Волны - колебания, распространяющиеся в пространстве с течением времени. Волновой процесс- процесс распространения колебаний в сплошной среде. Упругие волны- механические возмущения, распространяющиеся в упругой среде. При распространении волны частицы среды не перемещ-ся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной передаётся лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн независимо от природы явл-ся перенос энергии без переноса вещества. Различают механические волны, электромагнитные волны и волны на поверхности жидкости. В твёрдых телах, внутри жидкости и газа волны возникают благодаря силам упругости, а на поверхности жидкости – благодаря силе тяжести и силе поверхностного натяжения. Упругие волны бывают поперечные, если колебания совершаются в направлении, перпендикулярном распространению волны. Они возникают в твёрдых телах и на поверхности жидкости благодаря деформации сдвига и продольные если колебания совершаются в направлении распространения волны. Они возникают в твёрдых телах, внутри жидкости и газах благодаря деформации растяжения и сжатия. Длина волны λ (м) - расстояние между ближайшими точками, колеблющимися в одной фазе. За один период волна проходит расстояние, равное одной длине волны. За 1 период волна проходит расстояние, равное одной длине волны. Интенсивность волны - энергия, переносимая через единичную площадь за единицу времени: I=W/St (Дж/м²с). Скорость волны: ύ=λ/T=1/T=ρ/t (м/с).


№ 10. Звуковые волны. Звуковое давление. Отражение и поглощение звука

 

Звук – субъективное ощущение, которое возникает в результате воздействия на слуховой аппарат человека и животного звуковых волн - колебательных движений, распространяющихся в упругой среде. Звук хар-ся высотой, громкостью и тембром. Тон – звуковые колебания, происходящие с определённой частотой и не меняющиеся с течением времени. Обертон – колебания с n-кратной частотой основного тона. Высота звука определ-ся частотой основного тона (чем больше частота, тем выше звук). Громкость звука опр-ся амплитудой колебаний, т.е. интенсивностью звука (чем больше интенсивность, тем звук громче). Тембр – набор спектров частот; опр-ся обертонами; это качество звука, его окраска, которая независимо от основных частот и интенсивности (высоты и громкости) позволяет различать источники звука друг от друга. Звуковое давление – добавочное (избыточное) давление над средним давлением окружающей среды (н-р атмосферным), образующееся в акустической среде. P=Aωρc, где А- амплитудное колебание волны, ω - циклическая частота, ρ - плотность среды, с- скорость распространения звуковой волны в веществе. Отражение звука. При падении звуковой волны на границу раздела двух сред часть её отражается, а часть преломляется и переходит в другую среду. Коэффициент отражения r – отношение интенсивного отражения волны к интенсивной падающей. r = Iотр. / Iпад. Формула Реллея: r = (ρ2c2-ρ1c1 / ρ2c2+ρ1c1)², где с1 и с2- скорости распространения звуковой волны 1-й и 2-й среды, ρ1 и ρ2- плотности 1-й и 2-й среды. Поглощение звука, где I0- интенсивность звука до поглощения, I- интенсивность звука после поглощения, х- толщина поглотителя, δ- коэффициент поглощения, который зависит от вещества поглотителя и частоты падающего звука, е= 2,7, знак «-» показывает на то, что интенсивность убывает.

№ 11. Уровень интенсивности звука. Громкость. Закон Вебера – Фехнера

Органы слуха у чел. и жив. воспринимают аккустич. колебания в опред. диапазоне частот и опред. диапазоне интенсивности. Ухо чел. может воспринимать при частоте 1кГц с интенсивностью не менее 10 в -12 степени Вт/м ^2/ . Эта чувствительность соответствует нижнему порогу слышимости. Максимальная интенсивность волны, воспринимаемая субъективно как звук = 10Вт/м^2 и наз. болевым порогом. Уровень интенсивности звука L= (Б) 1дБ=10 Б. Уровень громкости определяет восприятие звука, ур-нь громкости определяется Законом Вебера – Фехнера:

К – коэффициент пропорциональности, зависит от частоты и нижнего порога слышимости. Физ. величина интенсивности звука созд у чел субъективное ощущение громкости, которое опред. чувствит. уха к воздействию звуковой волны. Чувствит уха зависит: от физической особенности чел; от частоты; от интенсивности.

 

№ 12. Шум. Инфразвук и их влияние на живые организмы

 

Шум- звук, спектральная хар-ка которого явл-ся сплошной (треск, шипение), беспорядочно изменяющийся во времени частоты и амплитуды. Шум вызывает раздражение нервной системы человека и животного, нарушает нормальные физиологические функции их организмов, неблагоприятно влияет на человека и животного. Для нормальной жизнедеятельности шум не должен превышать 30 дБ (децибел). Абсолютное отсутствие шума также приводит к нарушению нервной системы, нарушению слухового аппарата, циркуляции крови, нарушению работы органов внутренней секреции, сердечнососудистой системы. При 70-80 дБ у свиноматок прекращ-ся лактация, а у кур-несушек - снижение сноски яиц. Инфразвук - механические колебания и волны, частоты которых ниже 20- Гц. Он действует на вестибулярный аппарат человека и животного, вызывает колебания некоторых органов (печень, почки) и резонанс приводит к ощущению боли, затруднению дыхания и т.д. Колебания сердца могут привести к разрыву сердечных сосудов (инфаркт).

 

№ 13. Ультразвук, его биологическое действие и применение в медицине и ветеринарии

 

Ультразвук - упругие колебания и волны, частоты которых выше 20- кГц. Его применяют в медицине и ветеринарии: 1) диагностика (УЗИ- ультразвуковое исследование). 2) терапия: при лечении суставов, сухожильно-связочного аппарата, мышечных отрофей и т.д. Основной метод лечения – фонофорез - метод введения некоторых лекарственных веществ в организм через кожу с помощью ультразвука. 3) хирургия: для удаления опухоли в мозговой ткани; для рассечения и сварки мягких тканей; для проведения операций в дыхательных органах, в пищеводе без вскрытия грудной клетки; в кровеносных сосудах - для разрушения холлестириновых утолщений; для сварки костей и сверления в них отверстий.

№ 1 Основные положения молекулярно-кинетической теории. Давление газа. Основное ур-ние МКТ. Температура

В основе МКТ лежат 3 положения, каждое из которых доказано на опыте. 1) все вещ-ва состоят из молекул, а молекулы из атомов.2) молекулы нах-ся в состоянии непрерывного хаотического дв-я. 3) молекулы взаимодействуют между собой. Доказательством этих положений служит закон постоянных отношений, Броуновское дв-е, диффузия, наличие межмолекулярных сил и агрегатное сост-е вещ-в. В МКТ идеальным газом наз-ся газ, который состоит из молекул, взаимодействие между которыми мало и его можно не учитывать. Реальные газы ведут себя подобно идеальному при больших разрежениях, т.е.когда расстояние между молекулами много больше размеров самих молекул. В простейших моделях газа молекулы рассматриваются как материальная точка. Движение отдельных молекул подчиняется закону Ньютона, но в целом разряжённый газ законам классической механики не подчиняется. Газ, заключённый в сосуд, оказывает давление на стенки сосуда, за счёт ударов молекул о стенки. Давление газа пропорционально концентрации молекул n и сред. кинетической энергии Wк поступательного движения молекул. Основное ур-ние МКТ - Клаузиуса: р = 2/3·n·Wк. Температура – величина, характеризующая направление теплообмена. Для измерения её используют шкалу Цельсия и шкалу Кельвина. Шкала Кельвина отличается от шкалы Цельсия физической сущностью и началом отсчёта, т.е. прибавляется 273º к температуре Цельсия.

 

№ 2 Газовые законы. Ур-ние состояния идеального газа, Клапейрона - Менделеева

 

Газовые законы: 1) Закон Бойля-Мариотта: для данной массы газа при постоянной температуре произведение газа на его объём есть величина постоянная: pV=const при T=const и m=const (процесс изотермальный). 2) Закон Гей-Люссака: а) объём данной массы газа при постоянном давлении изменяется линейно с температурой: V=V0(1+αt) при p=const и m=const (процесс изобарный), б) давление данной массы газа при постоянном объёме изменяется линейно с температурой: p=p0(1+αt) при V=const и m=const (процесс изохорный). 3) Закон Авогадро: моли любых газов при одинаковых температуре и давлении занимают одинаковые объёмы: Nа=6,02·10²³ моль-¹ - постоянная Авогадро. При нормальных условиях V=22,4·10-³ м³/моль. 4) Закон Дальтона: давление смеси идеальных газов равно сумме порциальных давлений входящих в неё газов: p=p1+p2+...+pn. Идеальный газ – газ, при котором выполняются требования: 1) собственный объём молекул газа пренебрежимо мал по сравнению с объёмом сосуда, 2) между молекулами газа отсутствуют силы взаимодействия, 3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие. Состояние идеального газа определяется параметрами: давление, объём, температура. Ур-ние состояния идеального газа: р = 2/3·n·Wк, Wк=3/2·KT (ур-ние Больцмана), К=1,38·10-²³ - постоянная Больцмана. Ур-ние Клапейрона – Менделеева: PV=m/M·RT, где P- давление, V- объём, m- масса, M, молярная масса, R- газовая постоянная, T- температура.

 

№ 3 Явление переноса. Диффузия. Теплопроводность. Вязкость

 

Явление переноса – особые необратимые процессы в неравновесных системах, в результате которых происходит перенос энергии (теплопроводность), массы (диффузия), импульса (вязкость). Диффузия – самопроизвольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей, твёрдых тел. Диффузия сводится к обмену масс частиц этих тел, возникает и продолжается пока существует градиент плотности. Явление диффузии для химически однородного газа подчиняется закону Фика: jm= -D·(dρ/dx), где jm- плотность потока массы, D- коэффициент диффузии, dρ/dx – градиент плотности, «-» значит, что перенос массы происходит в направлении убывания плотности. Теплопроводность – процесс распространения теплоты от более нагретых частей системы к менее нагретым, не сопровождающийся переносом массы вещества или излучением энергии в виде электромагнитных волн. Передача теплоты путём теплопроводности описывают законом Фурье: кол-во теплоты ΔQ, переносимое через поверхность S, перпендикулярно направлению оси OX, вдоль которого убывает температура, пропорционально площади этой поверхности, времени переноса Δt и градиенту температуры ΔT/Δx: ΔQ= - ЛS· (ΔT/Δx)· Δt. «-» значит, что при теплопроводности энергия переносится в направлении убывания температуры. Вязкость – механизм возникновения внутреннего трения между параллельными слоями газа, жидкости, движущимися с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее уменьшается, движущегося медленнее – увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее. jp= -ή·(dύ/dx), где jp- плотность потока импульса, dύ/dx – градиент скорости, ή – динамическая вязкость. «-» значит, что импульс переносится в направлении убывания скорости.

 

№ 4 Влажность воздуха. Абсолютная и относительная влажность. Методы измерения влажности

 

Влажность воздуха – содержание водяного пара в воздухе. Абсолютная влажность – кол-во водяного пара в единице воздуха: а = mH2O / V (кг/м³), PV=(m/M)·RT:V, p=Q·(RT/M)=(m/V)·RT/M. Абсолютная влажность – порциальное давление водяного пара при данной температуре. Относительная влажность – отношение абсолютной влажности, содержащейся в воздухе при данной температуре, к тому кол-ву пара, которое необходимо для насыщения этого воздуха. B=a/a0·100%. Относительную влажность определяют с помощью гигрометра и психометра.

 

№ 5 Термодинамика. Равновесное состояние. Обратимые и необратимые процессы. Внутренняя энергия термодинамической системы

 

Термодинамика – раздел физики, в котором изучаются закономерности тепловой формы движения материи и связанных с ней физических явлений. Термодинамическая система – совокупность макроскопических тел, которые могут обмениваться между собой и внешней средой веществом и энергией. Если такой обмен существует только между телами, образующими систему, то система наз-ся изолированной. При наличии обмена с внешней средой говорят об открытой системе. Равновесное состояние (термодинамическое равновесие) – состояние системы, в которое она самопроизвольно приходит через большой промежуток времени при условии, что эта система изолирована от окружающей среды. Релаксация – процесс установления термодинамического равновесия. Термодинамический процесс – переход системы из одного равновесного состояния в другое в результате её взаимодействия с внешними телами. Обратимый процесс – процесс, который может протекать в прямом и обратном направлениях, причём так, что система возвращается в исходное состояние без того, чтобы в окружающих телах происходили какие-либо изменения, а возвращение проходит через ту же последовательность промежуточных состояний, что в прямом процессе, но в обратном порядке. Необратимый процесс – процесс, при котором энергия, хотя бы частично, превращается в теплоту, т.к. часть энергии, перешедшая в теплоту при прямом процессе, не может вернуться в систему самопроизвольно при обратном процессе. Внутренняя энергия (U) – суммарная кинетическая и потенциальная энергия взаимодействия всех частиц системы. В идеальных газах изменение внутренней энергии связано с изменением температуры, которая определяется изменением средней кинетической энергии хаотического движения частиц системы.

 

№ 6 Кол-во теплоты. Теплоёмкость (ур-ние Майера)

 

Кол-во теплоты – часть внутренней энергии, переданной системой (или системе) в процессе теплообмена: Q=ΔU+A. Кол-во теплоты считают положительным, если теплота передаётся от внешних тел к системе. Приведённое кол-во теплоты - отношение кол-ва теплоты, полученного или отданного системой, к температуре, при которой происходит теплообмен (Q/T). Удельная теплоёмкость – кол-во теплоты, необходимое для нагревания единицы массы вещества на 1 К (1ºС): С=Q/(m·ΔT) (Дж/кг·К). Она зависит от рода вещ-ва и от условий процесса. Молярная теплоёмкость – кол-во теплоты, необходимое для нагревания одного моля на один кулон: См = Q/(ύ·ΔT) = Q/((m/M)·ΔT) (Дж/М·К), См = С·М. Ур-ние Майера: Cp=Cv+R, где Cp- молярная теплоёмкость газа при постоянном давлении, Cv- теплоёмкость газа при постоянном объёме, R- молярная газовая постоянная.

 

№ 7 Работа при изменении объёма. Первое начало термодинамики. Применение к изохорному и изобарному процессу

Полная работа, совершаемая газом при изменении его объёма, находится по формуле: А = интеграл по V1 до V2 от p·dV. Она справедлива для всех изменений объёма твёрдых, жидких и газообразных тел. Первое начало термодинамики (закон сохранения энергии): кол-во теплоты, переданное системе, идёт на изменение внутренней энергии и на работу против внешних сил. Q=ΔU+A, где ΔU- кинетическая энергия молекул, А- работа, Q- теплоты, переданное системе. Изохорный процесс: V=const, А=0, Q= ΔU=Cvm·(m/M)·ΔT.

Изобарный процесс: p=const, Q= Cpm·(m/M)·ΔT, ΔU=Cvm·(m/M)·ΔT, А=p·ΔV, Q= ΔU+A.

 

№ 8 Применение первого начала термодинамики к изотермическому и адиабатному процессу. Закон Пуассона

 

Изотермический процесс: T=const, ΔU=0, A=Q=m/M·RT·ln(V2/V1)= m/M·RT·ln(p1/p2).

Адиабатный процесс – процесс, при котором отсутствует теплообмен между системой и окружающей средой: Q=const, A= -ΔU= Cvm·(m/M)·ΔT.

Ур-ние Пуассона: pV =const, γ- коэффициент Пуассона, γ= Cp/Cv=(i+2)/i.

 

№ 9 Теплопродукция организмов. Удельная теплопродукция

Живой организм выделяет теплоту в окружающую среду за счёт энергии, полученной от продуктов питания или от фотосинтеза, а также выполняет различные виды работы: 1) химическая работа – синтез высокомолекулярных вещ-в (белки) из низкомолекулярных (жиры, углеводы). 2) механическая работа – выполняется мышцами при их сокращении и затрачивается на перемещение всего тела или его отдельных органов против внешних механических сил. 3) электрическая работа – генерирование биопотенциалов, при возбуждении в нервных клетках. 4) осмотическая работа – транспорт вещ-в через клеточную мембрану против направления градиента концентрации этих вещ-в. 5) работа по оптическому высвечиванию – свечение организмов, некоторые из которых могут светиться довольно значительно (светляки). Энергия, образующаяся при окислении продуктов питания, выделяется в виде теплоты и делится на первичную (выделяется сразу после окисления) и вторичную (в результате мышечной деятельности).

 

№ 10 Терморегуляция в живом организме. Особенности живого организма как термодинамической системы. Тепловой баланс организма. Первое начало термодинамики для живого организма

Существует 4 механизма, определяющих тепловое равновесие в организме. Это явления теплопроводности, конвекции, теплового излучения и испарения. Теплопроводность – процесс распространения теплоты от более нагретых частей системы к менее нагретым, не сопровождающийся переносом массы вещества или излучением энергии в виде электромагнитных волн. Передача теплоты путём теплопроводности описывают законом Фурье: кол-во теплоты ΔQ, переносимое через поверхность S, перпендикулярно направлению оси OX, вдоль которого убывает температура, пропорционально площади этой поверхности, времени переноса Δt и градиенту температуры ΔT/Δx: ΔQ= - ЛS· (ΔT/Δx)· Δt. «-» значит, что при теплопроводности энергия переносится в направлении убывания температуры. Интенсивность теплового потока кол-ва теплоты, переносимая в единицу времени через единицу площади поверхности, перпендикулярна к этой поверхности. Jt = -Л· (ΔT/Δx), ΔT/Δx- градиент температуры, Л- коэффициент теплопроводности. Конвекция – передача теплоты в жидких и газообразных телах путём перемешивания нагретых и холодных слоёв, связанная с перемешиванием массы вещ-ва. Она происходит только в направлении уменьшения температуры. Интенсивность теплового потока, передаваемого от нагретой поверхности к окружающей среде, при установившемся процессе пропорциональна разности между температурой поверхности и средней температурой среды: Jk=α·(Tn – Tc), α- коэффициент теплопередачи. Тепловое излучение – атомы и молекулы любого тела излучают электромагнитные волны, уносящие с собой часть внутренней энергии тела. Интенсивность излучения повышается при увеличении внутренней энергии и температуры тела. Jиз = έσ( Тк²² - Тв²² ), где Тк- температура кожи, Тв- температура воздуха, έ- поправочный коэффициент, σ- постоянная Стефона= 5,6·10-²²²². Испарение - количество теплоты, выделяемой организмом. Потери тепла, связанные с испарением, зависят: от активности физиологических процессов, от температуры, от её влажности. Особенности живого организма как термодинамической системы: поддержание постоянной температуры тела у высших животных связано с наличием у них центра терморегуляции. Температурными датчиками системы терморегуляции служат рецепторы, находящиеся в коже и слизистых оболочках. В рецепторах возникает раздражение, вызываемое повышением или понижением температуры, которое сигнализирует в ЦНС о направлении и интенсивности теплового потока. Кожа принимает основное участие в теплообмене. Под действием тепла усиливается потоотделение, которое способствует повышению теплоотдачи, а также выведению из организма вредных продуктов метаболизма. Тепловой баланс организма: т.к. внешние условия, а также физиологические процессы могут меняться в определенных пределах, то для поддержания стационарного температурного состояния живые организмы в ходе эволюции выработали определенные механизмы, которые могут немного понижать или повышать температуру, увеличивая или уменьшая теплообмен с внешней средой. Так, при охлаждении животного в его клетках увеличивается скорость гидролиза АТФ и в мышцы поступает дополнительная энергия. У животных взъерошиваются волосы, между волосами увеличивается воздушная прослойка, что приводит к уменьшению обмена теплотой между животным и средой. При повышении температуры среды в организме возникают процессы, приводящие в действие термопонижающие центры, в результате чего происходит расширение кровеносных сосудов, увеличение потоотделения, учащение дыхания.

 

№ 11 Энтропия. Свойства энтропии. Второе начало термодинамики и его применение в биологии

Для характеристики состояния термодинамической системы Клаузиус ввёл понятие энтропии меры беспорядка состояния системы. Энтропия – мера необратимого рассеяния энергии и представляет собой ф-ю состояния термодинамической системы. dS=dQ/T, (S)=Дж/к. Свойства энтропий:1) энтропия – величина аддитивная, т.е. энтропия системы равна сумме энтропий отдельных элементов.2) если в изолированной системе происходит обратимые процессы, то её энтропия остаётся неизменной.3) если в изолированной системе происходит необратимые процессы, то её энтропия возрастает.4) энтропия изолированной системы не может уменьшаться. Второе начало термодинамики говорит о том, что в изолированной системе процессы протекают в направлении возрастания системы. Живой организм не может быть изолирован от окружающей среды, т.к. он поглощает кислород, воду и питательные вещ-ва. Если изолировать организм, т.е. лишить его пищи и кислорода, то это смерть. Существование биологических изолированных систем невозможно. Они могут быть только открытыми, т.е. системами, в которых обмениваются с окружающей средой энергией и вещ-вом. Организмы, в процессе своего развития, непрерывно, за счёт обмена вещ-в, создаёт из менее упорядоченных систем более упорядоченные – энтропия уменьшается – это не противоречит второму началу термодинамики, т.к. он сформулирован для изолированной системы. Полное изменение энтропии: ΔS=ΔSi+ΔSe, ΔSi- изменение энтропии, связанное с необратимыми процессами в организме, ΔSe- изменение энтропии вследствие взаимодействия с окружающей средой. ΔSi>0, т.к. связано с выделением тепла организмом. ΔSe>0, то высокомолекулярное соединение разрушается, смерть. ΔSi= -ΔSe.

 

№ 12 Применение второго начала термодинамики к тепловым двигателям. КПД теплового двигателя.

Тепловой двигатель представляет собой систему, работающую за счет внешних источников тепла, которая периодически повторяет тот или иной термодинамический цикл и преобразует теплоту в механическую работу. Тепловой двигатель состоит из нагревателя, сообщающего ему количество теплоты Q1, рабочего тела и охладителя, в который отводится количество теплоты Q2. Работа, совершаемая двигателем, равна А= Q1+Q2. Из второго начала термодинамики следует, что невозможен процесс, единственным результатом которого было бы превращение всей теплоты, полученной нагревателем, в эквивалентную ей работу. Поэтому не может существовать теплового двигателя, в котором часть тепла не отводилась бы в охладитель. Коэффициентом полезного действия теплового двигателя называют величину ή=(Q1-Q2)/Q1. Поскольку Q2 не может быть равно нулю, то КПД теплового двигателя всегда меньше единицы. Это утверждение может служить одной из формулировок второго начала термодинамики. Живые организмы - это своеобразные тепло вые двигатели, получающие теплоту в результате происходящих в них экзотермических реакций, в которых участвуют биологические макромолекулы. Как и любой тепловой двигатель, живой организм выделяет теплоту и совершает работу. Особое значение в термодинамике имеет тепловой двигатель, работающий по циклу Карно, который состоит из последовательно чередующихся двух изотермических и двух адиабатических процессов. Рабочее тело (идеальный газ) совершает работу за счет теплоты, подводимой к нему в изотермическом процессе; при обратном изотермическом процессе часть теплоты уходит от рабочего тела. КПД такого двигателя: ήм=(T1-T2)/T1, где Т1 и Т2 - температуры нагревателя и охладителя. КПД цикла Карно является максимальны значением для КПД любого реального двигателя, работающего в тех же условиях.


Информация о работе «Ответы по курсу физики»
Раздел: Физика
Количество знаков с пробелами: 70310
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
39513
23
2

... Основные законы электродинамики и их технические применения 8 ч. 2 ч. 2 ч. 2 ч. 2 ч. 2 ч. 2 ч.   2.2. Разработка технологических карт по курсу физики 10 кл. Технологическая карта в педагогической технологии Монахова В.М. – “ предельно наглядная, образная, ...

Скачать
94498
7
0

... показателю обученности для категорий учащихся старшего школьного возраста общеобразовательной средней школы и студентов физико-математических специальностей с учётом коррекционного коэффициента М3(t), который и необходимо рассчитать в работе. Как уже отмечалось выше, экспериментальное исследование по определению коррекционного коэффициента на каждой возрастной категории испытуемых будем проводить ...

Скачать
193189
0
0

... . научн. картине мира, кот. дает естествознание. Необходимость применения естствено научных методов и законов в практической деят-ти гуманитарных специальностей и привело к постановке того курса, кот. мы будем изучать: Физика для гуманитариев. (38)    Связь между разделами естествознания. Слово естествознание представляет из себя сочетание 2х слов: естество (природа) и знание. В настоящее время ...

Скачать
78776
8
0

... действию указанной щели, плоскость которых параллельна щели. Применение этой аналогии делает явление поляризации света понятным и доступным. ГЛАВА 2 Другие виды аналогий в школьном курсе физики. § 5 Использование аналогии при изучении транзистора. В настоящее время транзистор как полупроводниковый прибор нашел широкое применение во всех сферах человеческой деятельности. Популярность ...

0 комментариев


Наверх