6.4 Расчет проектных параметров термодросселя
Термодроссель применяют для регулирования требуемого расхода рабочего вещества. В нем используют зависимость расхода газа от его температуры при заданном перепаде давления и геометрических параметров капиллярной трубки. Температура газа, в свою очередь, зависит от значения тока, пропускаемого через трубку.
Секундный расход рабочего тела через термодроссель на анод определяется по формуле:
, (6.22)
где P – усредненное давление ();
- давление на входе в термодроссель;
- давление на выходе из термодросселя;
- внутренний диаметр термодросселя;
- разность давлений на входе и выходе из термодросселя;
T – температура рабочего вещества в термодросселе ( );
- коэффициент вязкости ( для ксенона );
- длина термодросселя (примем );
R – газовая постоянная для ксенона, R = 63.29 Дж/кг·К.
Давление на входе в термодроссель равно давлению в ресивере . Для достижения необходимого давления на выходе из термодросселя зададимся отношением:. Отсюда давление на выходе из термодросселя равно . Усредненное давление равно:
(6.23)
Разность давлений равна:
Определим внутренний диаметр термодросселя:
(6.24)
6.5 Расчет проектных параметров жиклераДальнейшее снижение давления в системе подачи происходит в жиклере, который представляет собой пластинчатую шайбу с отверстием.
Секундный расход рабочего тела через жиклер определяется по формуле:
, (6.25)
Sж – площадь поперечного сечения жиклера, приведенная площадь;
- давление в жиклере (принимаем давление на входе в жиклер равным давлению на выходе из ресивера и равным );
k – коэффициент адиабаты (для ксенона k=1,67);
- температура в жиклере ( );
R – газовая постоянная для ксенона, R = 63.29 Дж/кг·К.
С учетом того, что 90% рабочего вещества поступает в ГРК, а остальные 10% - на катод, имеем:
кг/с,
Приведенная площадь жиклера находится по формуле:
. (6.26)
м2 .(6.27)
Определим диаметр жиклера:
.(6.28)
Из технологических соображений диаметр жиклера принимаем равным 3мм.
На чертеже (ХАИ.06.441п.11.СГ.05) представлена система электропитания (СЭП), основной задачей которой является поддержание работы ЭРД и систем, обеспечивающих его функционирование. На этом рисунке без раскрытия внутренней структуры каналов электропитания приведен общий принцип построения СЭП.
Так все каналы электропитания по входу подключены к общей выходной шине СЭС, от которой они получают электроэнергию. Сигналы, управляющие их работой, поступают с шины обмена информацией с СУ, а точнее с контроллером СЭП, входящим в состав СУ.
Основными датчиками, позволяющими СУ контролировать работу СЭП (а точнее работу отдельных КЭП и их нагрузки) являются датчики тока и напряжения (ДТН), устанавливаемые на выходе каждого КЭП (эти датчики являются составной частью КЭП). Если нагрузкой КЭП является не один потребитель (нагрузка), а целая система однотипных нагрузок (например, датчики давления, установленные в СХПРТ, или такие исполнительные устройства, входящие в СХПРТ, как электроклапаны), то на выходе КЭП имеется совокупность коммутирующих устройств, управляемых сигналом СУ и в цепи каждой нагрузки устанавливаются свои датчики тока и/или напряжения, сигнал с которых подается на СУ.
Поскольку нагрузкой КЭП так же являются газоразрядные промежутки систем ЭРД (КК1, КК2, ОК, ГРК), то к тем же потребителям параллельно подводится напряжение с систем инициирования разряда (СИР), включение которых осуществляется по команде СУ, а результат работы оценивается по изменению тока и напряжения на выходе соответствующего КЭП.
... ионные источники Как уже говорилось, в контактных ионных источниках образование ионов происходит в результате поверхностной ионизации. В ионных электрических ракетных двигателях применяются контактные ионные источники с пористым ионизатором. Пористые ионизаторы изготавливаются различными способами, например, тонкие каналы-поры могут быть пробиты лазерным или электрическим лучом. В качестве ...
... аэродинамики, такие,как Н. Е. Жуковский, С. А. Чаплыгин, Б. Н. Юрьев, В. В. Голубев, М. В. Келдыш, С. А. Христианович, Г. П. Свищев, В. В. Струминский и многие другие, находились во главе прогресса авиации. Трудность прикладного использования теоретических исследований состояла в том, что теоретические решения могли быть найдены только для отдельных форм профилей, крыльев, тел вращения. Это ...
... от 0,6 до 2,2 Мэв, Т3 (тритий) (β) : 0,018 Мэв]. Энергия космических лучей от 103 до 1012 Мэв. 2. Представление элементарных частиц в виде корпускул и волн Основные сведения об элементарных частицах, приведенные в разделе А, могут быть получены с помощью достаточно простых экспериментальных устройств. 2.1. Некоторые экспериментальные методы определения заряда, массы и длины волны ...
... зона защищает близлежащее жилье застройки от вредных и неприятно-пахнущих веществ, повышенного уровня шума. Производственный корпус и расположенный в нем участок по восстановлению посадочных отверстий блок-картера соответствуют санитарно-гигиеническим требованиям к помещениям и производственным зданиям. Участок по восстановлению блок-картера находится внутри производственного корпуса №2, который ...
0 комментариев