4. Баланс активной и реактивной мощности
4.1 Баланс активных мощностей
Особенностью производства и потребления электроэнергии является равенство выработанной и израсходованной в единицу времени электроэнергии (мощности). Следовательно, в электрической системе должно выполняться равенство (баланс) активных мощностей:
PГ=Pпотр+∆Pпер+Pс.н, (6)
где PГ – суммарная активная мощность, отдаваемая в сеть генераторами электростанций (в данном случае с шин УРП); Pпотр – суммарная совмещенная активная нагрузка потребителей системы; ∆Pпер – суммарные потери активной мощности во всех элементах передачи электроэнергии (линиях, трансформаторах) по электрическим сетям; Pс.н. – суммарная активная нагрузка собственных нужд УРП при наибольшей нагрузке потребителей.
Основная доля выработанной мощности идет на покрытие нагрузки потребителей. Суммарные потери на передачу зависят от протяженности линий электрических сетей, их сечений и числа трансформаторов и находятся в пределах 5 – 15% от суммарной нагрузки. Нагрузка собственных нужд электростанции зависит от их типа, рода топлива и типа оборудования. Для УРП составляют 8%. Располагаемая мощность генераторов системы несколько больше, чем рабочая мощность в режиме максимальных нагрузок. Требуется учитывать необходимость резервирования при аварийных и плановых (ремонтных) отключениях части основного оборудования. Для УРП мощность резерва системы должна быть не меньше 10 – 12% от ее рабочей мощности. Расчет баланса активной мощности приведен в приложении Б.
4.2 Баланс реактивных мощностей
В электрической системе суммарная генерируемая реактивная мощность должна быть равна суммарной потребляемой. В отличие от активной мощности, источниками которой являются только генераторы электростанций, реактивная мощность генерируется как ими, так и другими источниками, к которым относятся воздушные и кабельные линии разных напряжений Qл, а также установленные в сетях источники реактивной мощности (компенсирующие устройства – КУ) мощностью QКУ.
Поэтому баланс реактивной мощности в электрической системе представляется уравнением:
Qг + Qл + QКУ = Qпотр + ∆Qпер + Qс.н (7)
Уравнение баланса реактивных мощностей связано с уравнением баланса активных мощностей, так как:
Qг = Pг·tgφг (8)
Потери реактивной мощности на передачу ∆Qпер в основном определяются потерями реактивной мощности в трансформаторах. В линиях напряжением 110 кВ и выше генерация реактивной мощности (зарядная мощность) компенсирует реактивные потери в линиях и может превысить их. Но реактивная мощность без дополнительного использования ИРМ может оказаться меньше требуемой по условию баланса реактивных мощностей. В этом случае образуется дефицит реактивной мощности, который приводит к следующему:
· Большая загрузка реактивной мощностью генераторов электростанций приводит к перегрузке по току генераторов.
· Передача больших потоков реактивной мощности от генераторов по элементам сети приводит к перегрузке по току генераторов и, как следствие к увеличению затрат на сооружение сети, повышенным потерям активной мощности.
· Недостаток реактивной мощности в системе влечет за собой снижение напряжения в узлах электрических сетей и у потребителей.
На основе специальных расчетов распределения реактивной мощности в электроэнергетической системе, для каждого узла системы определяется реактивная мощность, которую целесообразно передавать из системы в распределительные сети, питающиеся от того или иного узла.
Суммарная наибольшая реактивная мощность, потребляемая с шин электростанции, являющаяся источником питания для проектируемой сети, может быть оценена по выражению:
(9)
где kО.Q – коэффициент одновременности наибольших реактивных нагрузок потребителей kО.Q=0,98;
QП.нб – наибольшая реактивная нагрузка узла i;
n – количество пунктов потребления электроэнергии;
– суммарные потери реактивной мощности в трансформаторах и автотрансформаторах;
– потери реактивной мощности в линии;
– реактивная мощность, генерируемая линией;
Для оценки потерь реактивной мощности в трансформаторах и автотрансформаторах можно принять, что при каждой трансформации напряжения, потери реактивной мощности составляют приблизительно 10% от передаваемой через трансформатор полной мощности:
(10)
где – количество трансформаций напряжения от источника до потребителей.
Потери реактивной мощности в линии DQВЛ существенно зависят от передаваемой мощности и длины линии; генерируемая линией реактивная мощность Qc.ВЛ пропорциональна длине линии. Обе эти величины зависят от напряжения электропередачи, при чем потери мощности обратно пропорциональны, а зарядная мощность прямо пропорциональна квадрату напряжения линии электропередачи. Вследствие этого соотношение DQВЛ и Qc.ВЛ весьма различается для линий разных номинальных напряжений. Сечение проводов воздушной линии практически не оказывает влияния на величины DQВЛ и Qc.ВЛ . Для воздушных линий 110 кВ допускается на этой стадии расчета принимать равными величины потерь и генерации реактивной мощности.
Наибольшая суммарная активная мощность, потребляемая в проектируемой сети, составляет:
(11)
где PП.нб – наибольшая активная нагрузка подстанции i;
kо.P=0,95 - 0,96 – коэффициент одновременности наибольших нагрузок подстанций;
DPс=0,05 – суммарные потери мощности в сети в долях от суммарной нагрузки подстанций.
Соответствующая данной PП.нб необходимая установленная мощность генераторов электростанций определяется следующими составляющими:
PЭС= PП.Нб + PЭС.сн + PЭС.рез (12)
где РЭС.сн – электрическая нагрузка собственных нужд станции;
РЭС.рез – оперативный резерв мощности станции.
Нагрузка собственных нужд зависит от типа электрической станции и может быть ориентировочно принята для ТЭЦ 8 — 14 %, от установленной мощности генераторов электрической станции.
Оперативный резерв (РЭС.рез) обосновывается экономическим сопоставлением ущербов от вероятного недоотпуска электроэнергии при аварийном повреждении агрегатов на электростанции с дополнительными затратами на создание резерва мощности. Ориентировочно резервная мощность электростанций должна составлять 10—12% от суммарной установленной мощности генераторов, питающих рассматриваемых потребителей.
Расчет баланса реактивной мощности приведен в приложении В.
... = 1,45 = 33,1/16=2,07 В этой главе было составлено четыре варианта схем сети, из которых выбрали два наиболее рациональных, исходя из требований надежности к электрической сети. Для выбранных вариантов выбрали напряжения каждой линии, сечение проводов, трансформаторы. 5. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ НАИБОЛЕЕ РАЦИОНАЛЬНОГО ВАРИАНТА Для выбора лучшего варианта схемы сети из двух, для ...
... в узлах 1, а, б и перетоков мощности на отдельных участках сети. Вспомогательными являются задачи, связанные с определением параметров элементов схемы замещения электрической сети, показанной на рис.3(б). Номинальное напряжение нагрузочного и генераторного узлов полагается равными 10 кВ, а номинальное напряжение линии 220(110) кВ. Рис.3. Схема двухцепной линии с трансформаторами по ...
... (5.2), где - ударный коэффициент, который составляет (табл.5.1). Расчёт ТКЗ выполняется для наиболее экономичного варианта развития электрической сети (вариантI рис.2.1) с установкой на подстанции 10 двух трансформаторов ТРДН-25000/110. Схема замещения сети для расчёта ТКЗ приведена на рис. 5.1. Синхронные генераторы в схеме представлены сверхпереходными ЭДС и сопротивлением (для блоков 200МВт ...
... 110 78,36 110 25 ИП - а 75 110 150 220 45 а - г 50 110 112,54 220 15 II ИП - в 31 110 99,7 110 25 в - д 17,5 110 78,4 110 25 в - б 6 35 47,9 110 25 Опыт эксплуатации электрических сетей показывает, что при прочих равных условиях предпочтительней вариант с более высоким номинальным напряжением, как более перспективный. В то же время ...
0 комментариев