2.3 Расчет и выбор элементов электроснабжения
2.3.1 Выбор аппаратов защиты и распределительных устройств
Согласно ПУЭ от перегрузок необходимо защищать силовые и осветительные сети, выполненные внутри помещений открыто проложенными изолированными незащищенными проводниками с горючей изоляцией; силовые сети, когда по условию технолотческого процесса или режима их работы могут возникать длительные перегрузки; сети взрывоопасных помещений или взрывоопасных наружных установок независимо от условий технологического процесса или режима работы сети. Для защиты электрических сетей напряжением до 1 кВ применяют плавкие предохранители, автоматические выключатели, тепловые реле магнитных пускателей. Для защиты электрических сетей от токов КЗ служат плавкие предохранители. Они являются простейшими аппаратами токовой защиты, действие которых основано на перегорании плавкой вставки. Предохранители являются токоограничивающими аппаратами, так как в них обеспечивается околодуговое пространство и отключение цепи настолько быстро, что при больших кратностях тока в предохранителе ток не успевает достигнуть предельного значения. Магнитные пускатели предназначены главным образом для дистанционного управления асинхронными двигателями с короткозамкнутым ротором до 100 кВт; для пуска непосредственным подключением к сети и останова электродвигателя и реверса. В исполнении с тепловым реле пускатели также защищают управляемый электродвигатель от перегрузки. Магнитный пускатель представляет собой трехполюсный контактор переменного тока с прямоходовой магнитной системой, в который дополнительно встроены два тепловых реле защиты, включенных последовательно в две фазы цепи ЭД. Автоматические выключатели предназначены для автоматического размыкания электрических цепей при анормальных режимах (КЗ и перегрузки), для редких оперативных включений (3-5 в час) при нормальных режимах, а также для защиты цепей от недопустимых снижениях напряжения. Для защиты от токов КЗ в автоматическом выключателе применяется электромагнитный расцепитель мгновенного действия. Тепловой (обычно биметаллический) расцепитель предназначен для защиты от перегрузок, за счет изгибания биметаллической пластины. Расцепитель минимального напряжения срабатывает при недопустимом снижении напряжения в сети (30-50%). Такие расцепители применяют для ЭД, самозапуск которых нежелателен при самопроизвольном восстановлении питания.
Произведем выбор аппаратов защиты, устанавливаемых у силовых шкафов.
1) К силовым шкафам примем к установке автоматические выключатели, так как они защищают одновременно от токов КЗ и перегрузок одновременно.
2) Произведем расчет для силового шкафа 1
Iр = 327 А – расчетный ток силового шкафа;
Iн.а.>=Iн.р. (21)
Iн.р.>=Iр=327 А
Выбираем автоматический выключатель серии ВА52-37, Iн.а. = 400 А, Iн.р.= 400 А, U = 380 В.
Аналогично выбираем автоматические выключатели ко всем силовым шкафам. Результаты расчетов заносим в таблицу 2.
Таблица 2.
Iр, А | Iном, А | Iн.р. А | Uном, В | Тип АВ | |
СШ1 | 327 | 400 | 400 | 380 | ВА52-37 |
СШ2 | 78,8 | 100 | 80 | 380 | ВА51Г-31 |
СШ3 | 50,2 | 100 | 50 | 380 | ВА51Г-31 |
Для остальных приемников малой мощности целесообразно применить магнитные пускатели совместно с предохранителями.
Произведем выбор для сварочных аппаратов с Iном = 140 А
1) Выбираем магнитный пускатель типа ПМЛ-6200 с Iном = 140 А и номинальным током главных контактов Iном.гл.кон = 140 А, номинальное напряжение U = 380В;
2) Выбор предохранителя. Определяем ток плавкой вставки
(22),
Выбираем предохранитель типа НПН-60М с номинальным током патрона Iном= 1000 А, и номинальным током плавкой вставки Iном.вст= 630 А
Аналогично выбираем магнитные пускатели и предохранители к остальным приемникам. Результаты заносим в таблицу 3.
Таблица 3.
Приемники | Тип магнитного пускателя | Iном, А | Iном.гл.кон, А | Тип предохранителя | Iном, А | Iном.вст, А |
Наждачные станки | ПМЛ-6200 | 140 | 140 | ПП-17 | 1000 | 630 |
Карусельно-фрезерные станки | ПМЛ-6200 | 120 | 120 | ПН2-600 | 600 | 500 |
Вертикально-протяжные станки | ПМЛ-6200 | 120 | 120 | ПН2-600 | 600 | 500 |
Токарные полуавтоматы | ПМЛ-3200 | 50 | 50 | ПН2-250 | 250 | 200 |
Продольно-фрезерные станки | ПМЛ-3200 | 50 | 50 | ПН2-250 | 250 | 200 |
Горизонтально-расточные станки | ПМЛ-2200 | 20 | 20 | ПН2-100 | 100 | 80 |
Вертикально-сверлильные станки | ПМЛ-3200 | 35 | 35 | ПН2-250 | 250 | 125 |
Кругло-шлифовальные станки | ПМЛ-2200 | 20 | 20 | ПН2-60 | 100 | 80 |
Закалочная установка | ПМЛ-3200 | 35 | 35 | ПН2-250 | 250 | 125 |
Клепальная машина | ПМЛ-3200 | 60 | 60 | ПР2-350 | 350 | 300 |
Проводники электросетей от проходящего по ним тока согласно закону Джоуля-Ленца нагреваются. Количество выделенной тепловой энергии пропорционально квадрату тока, сопротивлению и времени протекания ток Q = I2Rt. Нарастание температуры проводника происходит до тех пор, пока не наступит тепловое равновесие между теплом, выделяемым в проводнике с током и отдачей в окружающую среду.
Чрезмерно высокая температура нагрева проводника может привести к преждевременному износу изоляции, ухудшению контактных соединений и пожарной опасности.
Поэтому устанавливаются предельнодопустимые значения температуры нагрева проводников в зависимости от марки и материала изоляции проводника в различных режимах.
Длительнопротекающий по проводнику ток, при котором устанавливается наибольшая длительно-допустимая температура нагрева проводника, называется предельно допустимым током по нагреву.
Значение допустимых длительных токовых нагрузок составляем для нормальных условий прокладки проводников: температура воздуха +25°С, температура земли +15°С и при условии, что в траншее уложен только один кабель. Если условие прокладки проводников отличается от идеальных, то допустимый ток нагрузки определяется с поправкой на температуру (kп1) и количество прокладываемых кабелей в одной траншее (kп2)
(23)
Определяем сечение кабеля для силового шкафа №1.
1) Расчетный ток СШ1 равен Iр = 35,5 А
По рекомендации выбираем кабель сечением S = 10 мм2 и допустимым током Iд = 85 А;
2) Проверяем выбранный кабель по условию нагрева
По условию Iд>= Iд/, следовательно, условие выполняется;
3) Проверяем кабель по потере напряжения
(24)
где l – длина кабельной линии, км;
r0 – активное сопротивление кабеля, Ом/км (принимается в зависимости от сечения кабеля);
х0 – индуктивное сопротивление кабеля, Ом/км.
К остальным силовым шкафам расчет сечения кабелей ведется аналогично. Расчетные данные заносим в таблицу 4.
Таблица 4.
Iр, А | Iд, А | S,мм2 | Iд/, А | Kп1 | Кп2 | L, км | R0, Ом/км | Х0, Ом/км | ΔU,% | |
СШ1 | 327 | 340 | 40 | 332 | 1,04 | 0,94 | 0,03 | 1,85 | 0,099 | 0,58 |
СШ2 | 78,8 | 85 | 10 | 83 | 1,04 | 0,94 | 0,05 | 1,85 | 0,099 | 1,6 |
СШ3 | 50,2 | 85 | 10 | 83 | 1,04 | 0,94 | 0,02 | 1,85 | 0,099 | 0,7 |
По рассчитанным токам для групп электроприемников распределительные силовые шкафы
1) Для СШ1, Iр = 327 А выбираем силовой шкаф серии СПУ62-5/1 с номинальным током 280 А, трехполюсный, с 16 отходящими линиями с предохранителями типа ПН2-400.
2) для СШ2, Iр = 78,8 А выбираем силовой шкаф серии СПУ62-5/1 с номинальным током 280 А, трехполюсный, с 16 отходящими линиями с предохранителями типа НПН-100.
3) для СШ3, Iр = 50,2 А выбираем силовой шкаф серии ШРС1-53У3 с номинальным током 280 А, трехполюсный, с 16 отходящими линиями с предохранителями типа НПН-100.
... или двигателя. · Местное управление – это управление приводом выключателя, разъединителя и другой аппаратуры непосредственно на месте. · Автоматическое управление – его используют в системе электроснабжения предприятий с большой потребляемой мощностью. Автоматическое управление осуществляется с помощью вычислительных машин управления ВМУ. Информация, поступающая в ВМУ, обрабатывается и ...
... , то установка на подстанции компенсирующих устройств экономически оправдана. 3.9 Основные технико-экономические показатели системы электроснабжения механического цеха Основные технико-экономические показатели системы электроснабжения цеха приводятся в таблице 3.8. Таблица 3.8 – Основные технико-экономические показатели Показатель Количественное значение Численность промышленно- ...
... перерывы на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады. 1.2 Определение величины питающих напряжений При проектировании системы электроснабжения метизного цеха, главной задачей является определение величины питающих напряжений. Для питания крупных и особо крупных предприятий следует применять напряжения 110, 150, 220, ...
... Примем 2 А=4м , В=4м , S=16м , высота Нр=2.2м При Е=100Лк 2 Руд=4.5 [Вт / м ] Ру.ст = Руд Ч S Ру.ст = 4.5 Ч 16 = 72 [Вт] Ру.ст = 72 [Вт] n = Ру.ст / Рсв n = 72 / 80 » 0.9 - 1[шт] n = 1[шт] Т.к. ОТК , а так же кабинет начальника цеха и кладовая равны по площади , то ставим в них по 1 люминисцентному светильнику . Сан узел Для его освещения берем лампы накаливания Примем А=5м ...
0 комментариев