3 КОМПОНОВКА ГЛАВНОГО КОРПУСА КЭС

3.1 Плановая компоновка главного корпуса

При разработке компоновки главного корпуса, прежде всего, необходимо решить вопрос о количестве отделений и их взаимном расположении. Из опыта проектирования известно, что этот вопрос решается неоднозначно даже при одном и том же типе основного оборудования и виде топлива.

Плановая компоновка турбинного отделения зависит от расположения в нем турбоагрегата. Турбоагрегата располагается в турбинном отделении поперечно.

Пролет турбинного отделения

 , м (7)

где LТА – длина турбоагрегата, м [5 ] , LТА=37,4 м.

  м.

Пролет котельного отделения

,м (8)

где DK – глубина котла , DK=19 м.

м.

Принимаем пролет турбинного и котельного отделения кратным 3. Lто = 45м, Lко =30 м.

Пролет бункерно-деаэраторного отделения LБДО может изменяться от 9 до 15 м. Принимаем LБДО=12 м

 Длина технологической секции определяется шириной котла с учетом размещения вспомогательного оборудования, подвода циркуляционных трубопроводов к конденсаторам и их обслуживания. Длинна технологической секции Lтс должна быть кратна шагу колонн Вк. принимаем шаг колонн 12 м.

Длина технологической секции

 Lтс=n Вк , м (9)

Где Вк-шаг колонн принимаем 12м, n-число пролетов

 Lтс=3 12 =36 м.

Количество монтажных площадок и их размеры на различных КЭС могут значительно отличаться из-за различного использования свободной площади в турбинном отделении на отметках пола и обслуживания турбоагрегатов.

LМП=0,5× LТС,м, (10)

LМП=0,5× 36=18 м..

Общая длина главного корпуса

LГК=nБLТС+nМПLМП, м,(11)

где nБ –количество блоков, nБ =6; nМП –количество монтажных площадок, nМП =2.

Общая длина отделения превышает максимально допустимый размер.

Так для основной территории европейской части России длина температурной секции не должна превышать, 174 м. Поэтому необходим температурный шов. Температурный шов будет находиться на расстоянии 132 м от постоянного торца

3.2 Высотная компоновка турбинного отделения

Рисунок1 – Плановая компоновка турбинного отделения

Предварительно принимаем два крана КС-160/32

Принимаем отметку обслуживания турбоагрегата НОБС =9,6 м

Необходимая расчетная высота подьёма над отметкой обслуживания

НПОД ОБ + НСТР + НЗАП, (12)

где НОБ –максимальное значение из высот ПВД и ПНД, НОБ =8,86; НСТР –высота стропов, принимаем ориентировочно равным диаметру ПВД или ПНД, НСТР =2,464; НЗАП – высота запаса, принимаем НЗАП =0,5 м.

НПОД =8,86+2,464+0,5=11,824 м.

Отметка головки рельса

НГ.Р*=НОБС ПОД +hКР, (13)

где hКР – расстояние по высоте от головки рельса до верхнего положения крюка основного подъема, hКР =1,95 м.

НГ.Р*=9,6+11,824+1,95=23,374 м.

Определяем высоту отметки подкрановой консоли

НП.К*= НГ.Р*– hР – hП.Б, (14)

где hР – высота кранового рельса, hР =0,17 по [5 ]; hП.Б – высота подкрановой балки, hП.Б =1,5 м по [ 5 ].

НП.К*= 23,374-0,17-1,5=21,08 м,

Принимаем НП.К =24 м кратное 300 мм.

Уточняем окончательное значение отметки головки рельса, м,

НГ.Р П.К +hР +hП.Б, (15)

НГ.Р =24+1,5+0,17=25,67 м.

Отметка верха колонн, м,

НВ.КГ.РК+a1, (16)

где НК – высота крана, НК=5,5 м; a1– допустимое приближение крана к стропильным конструкциям, a1=0,1 м.

НВ.К=25,67+5,5+0,1=31,27 м.

Высота верхней части колонны по отношению к отметке подкрановой консоли определяется, м,

hВ.Ч.КВ.К – НП.К, (17)

hВ.Ч.К=31,27-24=7,27 м.

Высота нижней части колонны, м,

НН.Ч.КП.К –tП +tБ.К, (18)

где tБ.К =0,6,...1,0 м – заглубление базы колонны ниже уровня пола, принимаем tБ.К =0,8 м; tП – отметка пола конденсационного подвала, принимаем tП =0 м.

НН.Ч.К=24–0+0,8=24,8 м

Полная высота колонны, м,

НК= НВ.Ч.К+ НН.Ч.К, (19)

НК= 7,27+24,8=32,07 м.

 При шаге ВК=12 м и QК>100 т принимаем hВ.К =750 мм, a=500мм

Высота сечения нижней части колонны, м,

hН.К= а+m1+а/2, (20)

m12+0,075+hВ.К –а (21)

m1=0,5+0,075+(0,75–0,5)=0,825 м.

hН.К=0,5+0,825+0,5/2=1,575 м.

Условие жесткости для верхней части колонны,

 и ,

, 0,1>0,083 – условие жесткости для верхней части колонны выполняется.

, 0,06>0,045 – условие жесткости для нижней части колонны выполняется.

Требуемый пролет крана, м,

LК= LТО – (m1+m2), (22)

m22+0,075, (23)

m2=0,+0,075=0,575 м.

LК= 45– (0,825+0,575)=43,6 м.

  3.3 Высотная компоновка котельного отделения

 Принимаем два крана КМ-50

Отметка головки рельса, м,

НГ.Р*-НОБС.К –Hподхб-0,52,1, (24)

где высота обслуживания котла, принимаем её равной высоте котла НОБС.К =52м. Нпод-высота подвесок котла, . Нпод=4,5м, Нхб-высота хрептовых балок , Нхб=9м.

НГ.Р*=2,1+52+4,5+9+0,5=68,1 м.

Отметка подкрановой консоли, по(14 ) м,

НП.К*= 68,1-0,17-1,5=66,43 м,

Принимаем НП.К =69 м кратное 300 мм.

Уточняем окончательное значение отметки головки рельса, м,

НГ.Р =69+1,5+0,17=70,67 м.

Определяем отметку верна колонн, м,

НВ.К=70,67+4,5+0,1=75,27 м.

 Высота верхней части колонны по отношению к отметке подкрановой консоли определяется,

hВ.Ч.К=75,27-69=6,27 м.

Высота нижней части колонны, м,

НН.Ч.К=69+0,8=69,8 м,

Полная высота колонны, м,

НК= 6,27+69,8=76,07 м.

При шаге ВК=12 м и QК=50 т принимаем hВ.К =750 мм, a=500мм

 Высота сечения нижней части колонны, м,

 hН.К= а+m1+а/2, (25)

где а– привязка колонны к продольной оси, при hВ.К =750 мм принимаем а=500 мм; m1–привязка оси подкрановой балки и рельса к оси колонны.

m1=0,4+0,075+(0,75–0,5)=0,725 м.

hН.К=0,5+0,725+0,5/2=1,475 м.

Принятые сечения колонн проверяются по условию жесткости колонны.

Проверяем выполнение условий жесткости для верхней и частей колонны,

, 0,12>0,083 – условие жесткости для верхней части колонны выполняется

, 0,02<0,045 – условие жесткости для нижней части колонны не выполняется, поэтому увеличиваем hН.К до 3 м.

m2=0,4+0,075=0,475 м.

Требуемый пролет крана, м,

LК= 30– (0,725+0,475)=28?8 м.

  3.4 Высотная компоновка бункерно-деаэраторного отделения

Отметка верха колонн, м,

НК.ДО= НП.Д+ НФ.Д + НД + НСТР + НК + hП.Б, (26)

где НП.Д – отметка перекрытия под деаэратор, НП.Д =25,2 м; НФ.Д –высота фундаментной рамы, принимаем НФ.Д =0,6 м; НД –высота деаэратора, НД =6,9 м; НСТР –высота стропов, принимается равным диаметру колонки деаэраторов НСТР =2,4 м; НК – высота крана от верхнего положения крюка до низа подвесных монорельсов, НК=2,7 м; hП.Б – высота подвесных балок, принимаем hП.Б =0,5 м.

НК.ДО= 25,2+0,5+6,9+2,4+2,7+0,6=38,3 м.

Принимаем кран КМ-50


Информация о работе «Проектирование электростанции на твердом топливе»
Раздел: Физика
Количество знаков с пробелами: 47232
Количество таблиц: 23
Количество изображений: 4

Похожие работы

Скачать
80294
0
5

... до последнего времени была ориентирована на докритическое давление p0=16,3 – 18 МПа. За рубежом на паросиловых тепловых электростанциях редко встречается столь глубокий расчетный вакуум, как на наших ТЭС – при tохл.в=12 0С, хотя это существенно усложняет создание мощных турбин. Только в странах бывшего СССР длительное время эксплуатировались быстроходные пятицилиндровые турбины насыщенного пара ...

Скачать
85463
20
511

... муфт 0,08 мм. Замеры, производимые при центровке, при­нято записывать в формуляр. При анализе результатов измерений, произведенных в холодном состоянии турби­ны, необходимо учитывать те изменения в по­ложении роторов, которые произойдут в процессе работы турбоагрегата; положение линии роторов горячей турбины значительно отли­чается от ...

Скачать
28414
0
3

... мощностью 250 МВт, рассчитанная на отпуск тепла в количестве 394 МВт (340 Гкал/ч). Заключение За счет сжигания топлива (включая дрова и другие биоресурсы) в настоящее время производится около 90% энергии. Доля тепловых источников уменьшается до 80-85% в производстве электроэнергии. При этом в промышленно развитых странах нефть и нефтепродукты используются в основном для обеспечения нужд ...

Скачать
142848
1
6

... рублей. Распределение капитальных вложений областного бюджета по отраслям и направлениям приведено в таблице 3.1[32] (см. приложение Б).   3.2 Сравнительная динамика инвестиционного климата и инвестиционной привлекательности Ростовской области   В настоящее время в области фактически сформировано региональное законодательство по поддержке инвестиционной деятельности. Темпы роста инвестиций в ...

0 комментариев


Наверх