3.5 Выбор стропильных конструкций
Главный корпус проектируемой КЭС является зданием каркасного типа. Каркас здания, воспринимающий нагрузки от собственной массы конструкций, технологического и кранового оборудования, атмосферных и температурных воздействий, может выполнчться из железобетона, смешанным или стальным.
Каркас здания выполняем из сборного железобетона.
Все элементы колонн выполнены двутаврового сечения. Колонна ряда А выполняется из двух заводских элементов марки К156 сечением 600´1500. Колонна ряда Б выполняется из пяти заводских элементов марки К206 сечением 600´2000. Колонна ряда В выполняется из семи элементов марки К206 сечением 600´2000. Колонна ряда Г выполняется из шести элементов марки К246 сечением 600´2400.
Ригели принимаем марки Р186 двутаврового сечения 600´1800.Фермы принимаем унифицированные стальные марки ТФ-30 и ТФ-45. Характеристики ферм приведены в таблице 10.
Таблица10 Фермы стропильные
Марка | Пролет, м | Длина, м | Высота на коньке, м | Высота на опоре, м |
ТФ-30 | 30 | 29,5 | 3,6 | 2,1 |
ТФ-45 | 45 | 44,5 | 4,35 | 2,1 |
4.1 Выбор кранов котельного, турбинного и бункерно-деаэраторного отделения
В главном корпусе электростанции краны предусматриваются для монтажа и ремонта оборудования и по характеру работы относятся к кранам легкого режима работы.
Количество и грузоподъемность кранов в турбинном отделении выбираются исходя из максимальной массы монтажных узлов турбоагрегата, а также общего количества обслуживаемых агрегатов.
В соответствии с массой наиболее тяжелых монтажных частей, принимаем в турбинном отделении два крана КС-160/32, в котельном отделении два крана КМ-50/10
Таблица11 Мостовые краны
Марка | Грузоподьемность, т: основного/вспо-могательного | Пролет LК, м | Высота НК, м | hКР, м | Вынос моста крана В2, м | Масса, т | |
тележки | общая крана | ||||||
КС–160\32 | 160\32 | 33,5 | 4,5 | 1,95 | 0,5 | 49 | 181 |
КМ–50 | 50/10 | 37 | 4,5 | 0,7 | 0,4 | 32 | 121 |
РНОМ>kЗРРАСЧ,
где kЗ – коэффициент запаса, kЗ =1,15; РРАСЧ – Расчетная нагрузка на валу механизма, кВт.
Для механизмов главного и вспомогательного подъемов крана, кВт.
, (27)
где G – номинальный вес поднимаемого груза, принимаем G=1330000 Н для главного подъема и G=320000 Н для вспомогательного подъема; G0- вес грузозахватывающих приспособлений, принимаем G0=5000 Н ; n-скорость подъема, принимаем n=0,07 м/с; h- КПД блоков, принимаем h=0,95.
Главный подъем
кВт.
Вспомогательный подъем
кВт.
кВт.
кВт.
Для механизмов горизонтального перемещения моста и тележки, кВт,
, (28)
где G – номинальный вес перемещаемого груза, принимаем G=1330000 Н; G1- собственный вес моста или тележки, принимаем G1=1810000 Н для моста и G1=490000 Н для тележки; n1-скорость подъема, принимаем n=0,62 м/с для моста и n=0,42 м/с для тележки; f=0,05 - коэффициент трения качения ; R – радиус колеса моста или тележки, R=25 cм для моста и R=15 cм для тележки; r– радиус шейки вала колеса моста или тележки, r =5 см для моста и r =3 см для тележки; k – коэффициент, учитывающий трение ребер колеса о рельсы, k=1,05; m – коэффициент трения скольжения, m=0,1 ; h- КПД передачи, принимаем h=0,93.
Для механизма перемещения моста
кВт
Для механизма перемещения тележки
кВт.
кВт.
кВт.
Таблица 12 Электродвигатели кранов ТО
Место установки эл.дв. | Серия эл.дв. | Количество эл.дв. | Мощность эл.дв., кВт |
Главный подъем | MTH | 1 | 118 |
Вспомогательный подъем | MTF | 1 | 30 |
Мост | MTF | 2 | 30 |
Тележка | MTF | 1 | 30 |
Электропривода крановых механизмов работают в повторно-кратковременном режиме S3 с относительной продолжительностью включения ПВ=40%. Номинальные значения мощности двигателей, рассчитанных на повторно-кратковременные режимы, указываются для стандартных значений ПВ: 25, 40 и 60%. Перерасчет номинального значения мощности двигателя при повторно-кратковременных режимах работы на номинальную мощность, кВт, при ПВСТ =100%,
. (29)
кВт,
кВт,
Выбор двигателей для котельного отделения производим аналогично.
Для механизмов главного и вспомогательного подъемов крана, кВт,
, (30)
где G – номинальный вес поднимаемого груза, принимаем G=500000 Н для главного подъема и G=100000 Н для вспомогательного подъема; G0- вес грузозахватывающих приспособлений, принимаем G0=5000 Н ; n-скорость подъема, принимаем n=0,07 м/с; h- КПД блоков, принимаем h=0,9.
Главный подъем
кВт.
Вспомогательный подъем
кВт.
кВт.
кВт.
Для механизмов горизонтального перемещения моста и тележки, кВт,
, (31)
где G – номинальный вес перемещаемого груза, принимаем G=500000 Н; G1- собственный вес моста или тележки, принимаем G1=1210000 Н для моста и G1=320000 Н для тележки; n1-скорость подъема, принимаем n=0,62 м/с для моста и n=0,42 м/с для тележки; f=0,05 - коэффициент трения качения ; R – радиус колеса моста или тележки, R=25 cм для моста и R=15 cм для тележки; r– радиус шейки вала колеса моста или тележки, r =5 см для моста и r =3 см для тележки; k – коэффициент, учитывающий трение реборд колеса о рельсы, k=1,05; m – коэффициент трения скольжения, m=0,15 ; h- КПД передачи, принимаем h=0,93.
Для механизма перемещения моста
кВт
Для механизма перемещения тележки
кВт.
кВт.
кВт.
Таблица13 Электродвигатели кранов КО
Место установки эл.дв. | Серия эл.дв. | Количество эл.дв. | Мощность эл.дв., кВт |
Главный подъем | MTH | 1 | 55 |
Вспомогательный подъем | MTF | 1 | 11 |
Мост | MTF | 2 | 15 |
Тележка | MTF | 1 | 11 |
При ПВСТ =40%,
кВт,
кВт,
кВт.
4.3 Расчет троллейных линий в турбинном и котельном отделенияхТроллейные линии предназначены для питания с помощью скользящих или катящихся токосъемников передвижных подъемно-транспортных устройств. Выполняются троллейные линии из профильной стали, из алюминиевых шин, часто применяется комплектный троллейный шинопровод.
Рисунок 1 – Схема питания троллейной линнии
Произведем расчет троллейных линий для турбинного отделения.
Расчетная максимальная нагрузка двигателей крана, кВт,
РМ.Р=КМРСР.М, (32)
где КМ – коэффициент максимума, КМ =2,3; РСР.М – средняя нагрузка крана за наиболее загруженую смену, кВт.
Средняя нагрузка крана определяется, кВт,
РСР.М=КИРОБ.Д, (33)
где КИ – коэффициент иcпользования по активной мощности, для кранов КИ =0,15; РОБ.Д – суммарная мощность группы двигателей двух кранов, приведенная к ПВСТ=100%, кВт.
РОБ.Д=2(Р+4Р) (34)
РОБ.Д =2(74,6+4 18,97)=301 кВт
РСР.М=0,2 301=45,2 кВт.
РМ.Р=2,3×45,2=103,9 кВт.
Расчетный максимальный ток для группы электродвигателей крана, А,
IР.М=РМ.Р/1,73UНОМcos j, (35)
где UНОМ – номинальное напряжение, UНОМ =0,38 кВт; cos j– коэффициент мощности, для крановых двигателей cos j=0,7.
IР.М=103,9/1,73×0,38×0,7=118,4 А.
Троллеи выполняем из уголка 5 50 50 5
Пиковый ток группы электроприемников троллейной линии, А,
IПИК=N×IП.МАКС+ (IР.М – kИIНОМ.МАКС) (36)
где N– число кранов ТО, N=2; kИ– коэффициент использования, характерный для двигателя, имеющего наибольший пусковой ток, kИ=0,15; IП.МАКС –наибольший из пусковых токов двигателей в группе у одного крана, при кратности перегрузки kП=2,5-3 пусковой ток асинхронного двигателя с фазным ротором IП.МАКС =(2,5-3)IНОМ.МАКС; IНОМ.МАКС – номинальный ток двигателя с наибольшим пусковым током, приведенный к длительному режиму работы с ПВ=100%,
IНОМ.МАКС=РПВст.ном/1,73UНОМcos j , (37)
IНОМ.МАКС=74,6/1,73×0,38×0,7=162,1 А;
IП.МАКС =2,5×162,1=402,25 А;
IПИК=2×402,25+ (225,8 – 0,15×162,1)=1006 А.
Потеря напряжения, В, в троллеях должна быть
< 5 %
где Dе – потеря напряжение на 100 А пикового тока и 100 м длины троллея, принимаем по [5 ] Dе=7 В/А×м; LР – длина троллеев в один конец от точки подключения питающей линии LР=50,4 м;
В.
U= условие не выполняется
устанавливаем подпиточные аллюминевые шины
; %, (38)
< 5% условие выполняется
Наивыгоднейшее сечение питающей кабельной линии для троллеев определяется из соотношения
, (39)
где DUДОП – допустимое потеря напряжения в сетях 380 В, которая складываются из потери напряжения в питающей линии и троллеях, т.е. DUДОП =8-10%; LПЛ –длина питающей кабельной линии, для ТО LПЛ =30 м; LТР = LР – расчетная длина троллейной линии, LТР=50,4 м.
.
По [ 5 ] выбираем кабель питающей линии сечением 3 95 мм2.
Производим аналогичный расчет для котельного отделения.
Средняя нагрузка крана определяется, кВт,
РОБ.Д =2(34,8+2 9,49+2 6,96)=135,4 кВт
РСР.М=0,15 135,4=20,31 кВт.
Расчетная максимальная нагрузка двигателей крана КО, кВт,
РМ.Р=2,3×20,31=46,7 кВт.
Расчетный максимальный ток для группы электродвигателей крана, А,
IР.М=46,7/1,73×0,38×0,7=101,5 А.
Троллеи выполняем из уголка 5 50 50 5
Номинальный ток двигателя с наибольшим пусковым током, приведенный к длительному режиму работы с ПВ=100%,
IНОМ.МАКС=34,8/1,73×0,38×0,7=75,6 А;
Наибольший из пусковых токов двигателей в группе у одного крана, при кратности перегрузки kП=2,5-3
IП.МАКС =2,5×75,6=189 А;
Пиковый ток группы электроприемников троллейной линии, А,
IПИК=2×189+( 92,6 – 0,15×75,6)=459,3 А.
Потеря напряжения, В, в троллеях
; В.
U= условие выполняется
Наивыгоднейшее сечение питающей кабельной линии для троллеев определяется из соотношения
.
По [ 5 ] выбираем кабель питающей линии сечением 3 35 мм2.
Таблица 14 Характеристика антрацитового штыба
Республика,бассейн,месторождение | Марка,класс | Горючая масса,% | |||||||||
Wр | Aс | Sс | Сг | Нг | Nг | Oг | Кл.о | Qрн | |||
МДж/кг | Ккал/кг | ||||||||||
Донецкий бассейн | АШ | 8.5 | 30 | 1.8 | 92 | 1.8 | 0.8 | 2.7 | 0.95 | 20.89 | 4990 |
;
;
;
;
;
;
;
где А – зольность сухой, горючей или рабочей массы топлива в зависимости от индекса, %; S – содержание серы в массе топлива, %; С – содержание углерода в массе топлива, % ; О – содержание кислорода в массе топлива, % ; Н – содержание водорода в массе топлива, %;
;
;
;
;
;
Расчетный расход топлива на работу котла, кг/с,
, (40)
где Qнр – низшая теплота сгорания топлива, Qнр=20.89 МДж/кг;
ηпгбр – КПД брутто парогенератора, по таблице , ηпгбр=0,9.
Расход воздуха, засасываемого дутьевым вентилятором, при максимально длительной производительности котлоагрегата, м3/ч,
Vв=1,05×В×Vв0×αт ×(tх. в+273)/273, (41)
где Vв0 – теоретически необходимый расход воздуха для сжигания 1 кг твердого топлива, который определяется по элементарному составу, м3/кг,
Vв0 = 0,0889×(Ср+0,375×Sр)+0,265×Нр – 0,033×Ор, (42)
Vв0=0,0889×(37,7+0,375×1,7)+0,265×0,33–0,033×1,1=2,74 м3/кг.
α т – коэффициент избытка воздуха на выходе из топки, α т=1,2 tх. в – температура холодного воздуха, принимаем tх. в=250С.
VB=1,05×242308×2,74×1,2(25+273)/273=890,322×103 м3/ч.
Устанавливаем два дутьевых вентилятора на котел каждый производительностью 50%
Выбираем тип дутьевых вентиляторов ВДН–32Н-I
Таблица 15 Дутьевой вентилятор
Типоразмер | Производительность, тыс. м3/ч | Рном, кВТ | nном, об/мин | Максимальное КПД |
ВДН–32Н-I | 500 | 925 | 730 | 85 |
Величина расхода уходящих газов при максимально длительной нагрузке парогенератора, м3/ч,
Vд= 1,05×В[Vг +Δα гт×Vв0 ](tд+273)/273 , (43)
где Δα гт – суммарный присос по газовому тракту, Δα гт=0,2; tд – температура дымовых газов перед дымососом, принята равной 130 0 С
V-теоретическое количество уходящих газов в расчете на 1 кг топлива при его полном сгорании , м3/кг
V=(0,6 (44)
V=(0,6
Vд=1,05×242308×[5,3+0,15×2,74]×(130+273)/273=2145 м3/ч.
Дымосос 2 ДОД43. Характеристика дымососа приведена в таблице 16
Таблица16 Дымососы
Типоразмер | Производительность, м3/ч | Рном, кВт | nном, об/мин | Максим. КПД |
ДОД43 | 1335/1520 | 1570/2500 | 370 | 82,5 |
5.2 Золоулавливание
Электрофильтры рекомендуется устанавливать с котлоагрегатами паропроизводительностью 420 т/ч и выше. Они обеспечивают степень очистки дымовых газов до 96-98%. Для особо тщательной очистки дымовых газов используются комбинированные золоуловители, при этом грубая очистка газов происходит в батарейном циклоне, а окончательная, тонкая- в электрофильтре
Таблица 17 Характеристика электрофильтра
Типоразмер | Число секций | Площадь активного сечения, м2 | Площадь осаждения, м2 | Габариты, м | Масса, т |
ЭГА2-56-12-6-4–330-5 | 2 | 181,7 | 20984 | 22,74х19,94х19,9 | 544,4 |
Расход летучей золы, поступающей в золоуловитель, кг/ч,
Мзвх =0,01×В×αунос×(Ар+q4×Qнр/32,7), (45)
где: αунос – доля золы в недожоге и уносе, по [3 ] αун =0,8 ; q4 - потери тепла с механическим недожогом, для мощных котлоагрегатов принимается равным 2,0 % ;
Мзвх =0,01×242308×0,8×(26,52+2×9,88/32,7) = 52579 кг/ч.
Количество летучей золы, выбрасываемой в дымовую трубу каждым котлоагрегатом, кг/ч
Мзвых=Мзвх(100-ηзу)/100 , (46)
где ηзу – полный КПД золоуловителя , по [2 ] ηзу =97 % ;
Мзвых= 52579×(100-97)/100=1577,37 кг/ч.
Количество летучей золы улавливаемое золоуловителями, кг/ч,
Мзу = Мз вх - Мз вых . (47)
Мзу = 52579-1577,37=51001,63 кг/ч.
Суммарное Количество летучей золы улавливаемое золоуловителями, кг/ч,
Мзу =6 51001,63=306009,78 кг/ч
5.3 ЗолошлакоудалениеНа проектируемой станции применяем схему совместного гидрозолошлакоудаления на отвал с помощью багерных насосов.
Суммарное количество шлака и золы, удаляемое с электростанции,кг/ч,
, (48)
кг/ч .
Мш.з=6 64146,9=384881,4 кг/ч
Диаметр шлакозолопровода, м,
, (49)
где Q- расчетный расход пульпы,
, (50)
где Мш.з, Мв- расход шлака, золы и воды, кг/ч,
Мв=12Мш.з ,
Мв=12×384881,4 = 4618576,8 кг/ч;
γш.з, γв-удельный вес шлака, золы и воды. По [ 4 ] γш.з=0,7 т/м3; γв=1 т/м3.
Расчетный расход пульпы всей станции, м3/ч,
м3/ч ;
v - расчетная скорость потока пульпы, приближенно можно принять v=1,8м/с при транспортировке багерными насосами.
Таблица18 Багерный насос
Типоразмер | Производительность, м3/ч | Диаметр рабочего колеса, мм | Мощность электро-двигателя , кВт | Частота вращения ротора , об/мин |
20Гр-8Т | 3000-5500 | 1350 | 1600 | 485 |
Дымовые трубы предназначаются для отвода дымовых газов в атмосферу. Чем больше высота трубы , тем дальше уносятся и на большую площадь рассеиваются не уловленные в газоочистительных устройствах частицы золы, а также окислы серы и азота.
На современных ТЭС высота труб достигает 330-420 м и принимается из условий унификации кратной 30 м. Железобетонный ствол трубы имеет коническую форму с постоянным или переменным уклоном образующей наружной поверхности от 1% в верхней части до 10% внизу.
Суммарный выброс окислов серы, г/с,
МSO2 = 0,02×ВΣ×106×Sp/3600 , (51)
МSO2 = 0,02×242,3 106×1,7/3600 = 2288,46 г/с.
Минимально допустимая высота дымовой трубы при учёте выбросов золы и окислов серы, м.
, (52)
где: Спдк – Предельно допустимая концентрация золы или сернистых газов – 0,5мг/м3; А – коэффициент , учитывающий условия вертикального и горизонтального рассеивания в воздухе, для Запада России А=160 ; F – безразмерный коэффициент, принимаемый для расчёта концентрации SO2 равным 1,0 , а для золы равным 2,0 ; m – безразмерный коэффициент, учитывающий влияние скорости газа на выходе из трубы, для скорости ωг=40 – 45 м/с m = 0,8, Н=180 м ; z – число дымовых труб, z=2 ; Δt – разность температур газов на выходе из трубы и окружающего воздуха, принята равной 90 0С; М – суммарный выброс золы МзΣвых = 438 г/с и сернистого газа МSO2=13730 г/с из труб.
Минимально допустимая высота дымовой трубы с учетом выбросов золы определяется по формуле, м.
, (53)
м.
Минимально допустимая высота дымовой трубы с учетом окислов серы определяется по формуле, м,
м.
Диаметр устья дымовой трубы, м,
, (54)
где ωг – скорость дымовых газов на выходе из трубы, ωг=50 м/с ;
м.
Количество дымовых труб определяется мощностью электростанции. Принимаем 3 дымовые трубы высотой 350 м каждая..
... до последнего времени была ориентирована на докритическое давление p0=16,3 – 18 МПа. За рубежом на паросиловых тепловых электростанциях редко встречается столь глубокий расчетный вакуум, как на наших ТЭС – при tохл.в=12 0С, хотя это существенно усложняет создание мощных турбин. Только в странах бывшего СССР длительное время эксплуатировались быстроходные пятицилиндровые турбины насыщенного пара ...
... муфт 0,08 мм. Замеры, производимые при центровке, принято записывать в формуляр. При анализе результатов измерений, произведенных в холодном состоянии турбины, необходимо учитывать те изменения в положении роторов, которые произойдут в процессе работы турбоагрегата; положение линии роторов горячей турбины значительно отличается от ...
... мощностью 250 МВт, рассчитанная на отпуск тепла в количестве 394 МВт (340 Гкал/ч). Заключение За счет сжигания топлива (включая дрова и другие биоресурсы) в настоящее время производится около 90% энергии. Доля тепловых источников уменьшается до 80-85% в производстве электроэнергии. При этом в промышленно развитых странах нефть и нефтепродукты используются в основном для обеспечения нужд ...
... рублей. Распределение капитальных вложений областного бюджета по отраслям и направлениям приведено в таблице 3.1[32] (см. приложение Б). 3.2 Сравнительная динамика инвестиционного климата и инвестиционной привлекательности Ростовской области В настоящее время в области фактически сформировано региональное законодательство по поддержке инвестиционной деятельности. Темпы роста инвестиций в ...
0 комментариев