Войти на сайт

или
Регистрация

Навигация


Пространственное вращение

Пространственное вращение – один из важнейших видов периоди­ческого движения в стационарных квантовых системах. Напомним, что в классической механике наиболее рациональное описание такого дви­жения достигается при использовании сферической системы координат, с которой мы и начнём свой анализ.

Сферическая система координат

4.3.1.1. Сферическая система координат хорошо известна из географии и астрономии. Положение частица на сфере в этом случае определяется с помощью широты и долготы, которые задаются посредством двух углов и , отсчитываемых относительно фиксированных осей, например, декартовых, как это показано на рис. 4.2. Вводя рас­стояние от центра вращения, переменный радиус r , получаем третью координату, необходимую для описания пространственного вращатель­ного движения

Шаровые координаты:

 

 Декартовы координаты:

(4.28)

Рис. 4.2. Сферическая система координат

При описании переменных данной задачи обязательно следует указать пределы их изменения

 или

 или

 или

4.3.1.2. Вычисление элемента объема в сферической системе ко­ординат проиллюстрируем рис. 4.2. Величина dV понадобится нам в дальнейших расчётах.

 (4.29)

4.3.2. Преобразование оператора Лапласа

4.3.2.1. Лапласиан – основа выражения оператора кинетической энергии и, следовательно, гамильтониана . Поэтому проследим подробно всю схему его преобразования при замене декартовой системы координат на сферическую. С подобной , но более простой процеду­рой мы уже имели дело при рассмотрении плоского ротатора.

4.3.2.2. В теории поля лапласиан является скалярным произве­дением вектор-оператора Гамильтона "набла" самого на себя– скаляр­ным "квадратом" : Поэтому вначале преобразуем оператор "набла"

. (4.30)

В соответствии с (4.28) x,y,z выражаются как функции сфе­рических координат, поэтому производные, составляющие оператор "набла", предстанут в следующем виде

(4.31)

4.3.2.3. Наборы частных производных в (4.30) образуют квадрат­ную матрицу коэффициентов, при умножении на которую происходит пе­реход от одного базисного вектор-столбца к другому:

(4.32)

Вычислим все производные, являющиеся элементами квадратной матрицы, дифференцируя выражения (4.28)

или

(4.33)

Напомним, что перемножение матриц подчиняется правилу "строка на столбец". В итоге элементы искомого вектор-столбца предстанут в виде суммы:

(4.34)

(4.35)

(4.36)

4.3.2.4. Следующий этап преобразований – построение оператора Лапласа в переменных .

(4.37)

Для этого, согласно уравнению (4.35), необходимо перемножить сами на себя выражения операторов однократного дифференцирования по координатам х,у,z через сферические переменные (4.32)–(.4.34) и затем взять сумму этих произведений. При этом следует учитывать, что перемножаются не числа, а операторы, и действие оператора из левой скобки на каждое слагаемое правой выполняется по правилам, аналогичным правилам дифференцирования произведения функций, т.е.

(4.38)

4.3.2.5. Ход преобразований продемонстрируем на примере одно­го из слагаемых лапласиана, например при этом, для сохранения упорядоченного характера записи выпишем новые слагаемые, получающиеся в результате дифференцирования, в столбец под каждым преобразуемым выражением. Это в некотором роде изменение привычного математического синтаксиса, цель которого – порядок и наглядность в записи

  

Cуммируя, получаем

. (4.37)


Информация о работе «Пространственное вращение»
Раздел: Физика
Количество знаков с пробелами: 6481
Количество таблиц: 2
Количество изображений: 6

Похожие работы

Скачать
7539
1
0

... вращении частиц в электрон-позитронной системе, известной как атом позитрония. Такое движение называется центральным, а сама задача Кеплеровой. Электрон невозможно зафиксировать на сфере постоянного радиуса – это запрещено принципом неопределенности. При движении электрона как бы образуется пространственное облако. Тем не менее, можно обратиться к аналогии с классической механикой, которая ...

Скачать
48598
0
5

... логический смысл безразмерной постоянной тонкой структуры выражается в том, что она показывает соответствие между континуумом Минковского и квартернионным время-пространством. Я полагаю, что Вольфганг Паули, который настаивал на теоретическом обосновании физического статуса этого загадочного числа 137,0306..., имел в виду нечто подобное. Однако формальных аргументов здесь не достаточно. Мы должны ...

Скачать
64773
0
2

... в пределах 1000 миль от горизонта событий. Динамические модели предсказывали и раньше, что Cygnus XR-1's относится к черной дыре. Газ не может непосредственно падать в нее, как в канаву, но образовывает завихрение в виде сглаженного спирального диска. 7. Пространственно-временные парадоксы. Теории о путешествиях во времени, всегда остаются одними из самых впечатляющих вслед за разработками в ...

Скачать
96191
2
2

... в двадцать пять лет. Многие из этих качеств переносились на женщин, которых они могли любить, бояться или ненавидеть за то, что те имеют такие качества. 5. Модель поведения Разворачивая тему половой дифференциации мышления, я перехожу к структуре, к модели поведения мужчин и женщин. Рассмотрение модели поведения, позволит нам перейти к сущности мужчин и женщин, т. е. к существованию этих, как бы ...

0 комментариев


Наверх