6. Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля

Якщо хвилі, поширюючись в пружному середовищі з кінцевою швидкістю, переносять енергію, то вони називаються біжучими. Перенос енергії в хвильовому русі кількісно характеризується вектором густини потоку енергії. Вектор потоку енергії вперше для механічних пружних хвиль був введений російським фізиком Умовим і називається вектором Умова. Напрямок вектора Умова збігається з напрямком переносу енергії, а його модуль дорівнює енергії, яка переноситься хвилею через одиничну площадку, розташовану перпендикулярно до напрямку поширення хвилі, за одиницю часу.

Для одержання рівняння біжучої хвилі ─ залежності зміщення коливної точки пружного середовища від координати і часу ─ розглянемо плоску синусоїдальну хвилю, допустивши, що вісь х збігається з напрямком поширення хвилі (рис. 21). У даному випадку хвильові поверхні, тобто поверхні однакової фази, перпендикулярні до осі х, а тому всі точки пружного середовища на цих поверхнях коливаються однаково. Зміщення будь якої точки пружного середовища від положення рівноваги в цьому випадку залежить лише від координати х і часу t, а його величина буде дорівнювати

Розглянемо деяку точку В, яка перебуває на відстані х від джерела коливань (рис. 1). Якщо коливання точок пружного середовища, які лежать у площині х = 0, описуються функцією U(0,t) = A cos, то точка В пружного середовища теж буде коливатися за тим же законом, але її коливання будуть відставати за часом від коливань джерела на τ, тому що для проходження хвилею відстані х потрібен час τ = , де  – швидкість поширення хвилі. Тоді рівняння коливань частинок, які лежать у площині х, буде мати вигляд

 (2)

де А – максимальне зміщення виділеної коливної точки В від положення рівноваги; ω – циклічна частота генератора коливань джерела.

Рівняння (2) є рівняння біжучої хвилі. Якщо плоска хвиля поширюється в протилежному напрямку, то

В загальному випадку рівняння плоскої синусоїдальної хвилі, яка поширюється без поглинання енергії уздовж позитивного напрямку осі х, має вигляд

 (3)

де А – амплітуда хвилі; ω – циклічна частота хвилі; – початкова фаза коливань, обумовлена вибором початкових значень х і t; [ω (t - x/υ) + φ0] – фаза плоскої хвилі.

В рівнянні (3) синусоїдальний характер хвилі характеризують хвильовим числом, яке дорівнює

 (4)

З врахуванням (4) рівняння (3) матиме вигляд

 (5)

Рівняння хвилі, яка поширюється в сторону менших значень осі х, відрізняється від (5) тільки знаком члена kх.

Розглянемо випадок, коли в процесі хвильового руху, фаза коливань не змінюється з часом, тобто

 (4.6)

Диференціюємо вираз (6) за часом, одержимо

,

звідки

Отже, швидкість υ поширення хвилі в рівнянні (6) є не що інше, як швидкість переміщення фази хвилі, а тому її називають фазовою швидкістю.

Сферичні хвилі утворюються в однорідному і ізотропному середовищі від точкових джерел коливань. Якщо повторити хід міркувань для плоскої хвилі, можна показати, що рівняння сферичної синусоїдальної хвилі – хвилі, хвильові поверхні якої мають вигляд концентричних сфер, записується так

 (7)

де r – відстань від точкового джерела сферичних хвиль до виділеної точки пружного середовища.

У випадку сферичної хвилі навіть у середовищі, яке не поглинає енергії, амплітуда коливань не залишається постійною, а зменшується з відстанню за законом  Рівняння (7) має місце лише для великих r, які значно перевищуючі розміри джерела коливань (джерело коливань тут можна вважати точковим).

З рівняння (3) можна одержати, що

тобто фазова швидкість синусоїдальних хвиль залежить від їхньої частоти. Це явище називають дисперсією хвиль, а середовище, у якому спостерігається дисперсія хвиль, називається дисперсним середовищем.

 


Информация о работе «Пружні хвилі»
Раздел: Физика
Количество знаков с пробелами: 25911
Количество таблиц: 0
Количество изображений: 6

Похожие работы

Скачать
109443
15
38

... чено раніше, якщо вибрати правильний напрямок поширення хвилі, можна створити бездротової датчик температури. Середовище поширення міняється разом з температурою, впливаючи на дані на виході. Нижче наведені деякі найбільш загальні способи застосування датчиків акустичних хвиль. Термодатчик будується на термозалежності швидкості поверхневих хвиль, яка визначається напрямком і типом кристалічного ...

Скачать
14571
0
0

... є поширення гіперзвуку в п’єзоелектричних матеріалах (напр., кристалах CdS), де пружні хвилі супроводжуються електромагнітними хвилями, і навпаки. У таких кристалах згасання і дисперсія гіперзвуку відбуваються в результаті його взаємодії з просторовими зарядами, зумовленими внутрішніми електричними полями. У цьому випадку діє також механізм електрон-фононної взаємодії, який обумовлений електричною ...

Скачать
36931
0
0

... – 2007. Міжнародна наукова конференція. Матеріали конференції. – Дніпропетровськ, Дніпродзержинськ. – 2007. – С.105. АНОТАЦІЯ Головко К.Г. Осесиметричні коливання дискретно підкріплених оболонкових елементів конструкцій на пружній основі при імпульсних навантаженнях. – Рукопис. Дисертація на здобуття наукового ступеня кандидата технічних наук за фахом 01.02.04 - механіка деформівного твердого ...

Скачать
8284
0
4

... різних точок середовища в один і той же момент часу, а на графіку гармонічного коливного руху зображено положення однієї і тієї ж точки, що коливається, в різні моменти часу. 3.Енергія хвилі. Вектор Умова   Процес поширення хвилі в якому-небудь напрямі в середовищі супроводжується переносом енергії коливань в цьому напрямі. Розглянемо плоску хвилю. Нехай S- це частина її фронту в момент часу ...

0 комментариев


Наверх