2.2 Определяем базовое число циклов перемены напряжений
а) по контактным напряжениям:
NН0 = 30 · НВ2,4;
для шестерни N01 = ;
для колеса N02 = ;
б) по напряжениям изгиба:
NF0 = 4 · 106.
2.3 Определяем фактическое число циклов перемены напряжений
а) по контактным напряжениям:
б) по напряжениям изгиба:
где m – показатель степени кривой усталости. При твёрдости меньше 350НВ m = 6.
Тогда,
;
2.4 Вычисляем коэффициент долговечности
а) по контактным напряжениям.
;
Для шестерни:
;
Так как NНЕ1> NН01, то принимаем KHL1=1;
Для колеса:
;
Так как NНЕ2> NН02, то принимаем KHL2=1.
б) по напряжениям изгиба.
Так как NFE1 > 4∙106 и NFE2 > 4∙106, то принимаем KFL1=1 и KFL2=1.
2.5 Вычисляем базовое значение предела выносливости
а) для контактных напряжений
Для термообработки улучшения
σ0нlimb=2·HB+70 [2]
Для шестерни:
σ0нlimb1 = 2·215 + 70 = 500 МПа.
Для колеса:
σ0нlimb2 = 2·195 + 70 = 460 МПа.
б) для напряжений изгиба
Для термообработки улучшение и нормализация:
σ0Flimb= 1,8 НВ;[2]
σ0Flimb1= 1,8 · 215 = 387 МПа;
σ0Flimb2= 1,8 · 195 = 351 МПа.
2.6 Определяем допускаемые контактные напряжения:
;
- коэффициент запаса.
При термообработке нормализация и улучшение принимаем [2]
МПа;
МПа;
- расчет ведем по наименьшему значению.
2.7 Определяем допускаемые напряжения изгиба
где - коэффициент, зависящий от вероятности безотказной работы. Принимаем = 1,75 [2]
- коэффициент, зависящий от способа изготовления заготовки, Для проката = 1,15[2]
МПа;
МПа.
2.8 Проектный расчет цилиндрической прямозубой передачи.
2.8.1 Определяем межосевое расстояние из условия обеспечения контактной прочности зуба
;
Предварительно принимаем КНβ = 1,2[2]
Ψba-ширина зубчатого венца;
Принимаем для прямозубой передачи Ψba= 0,25 и Ка = 49,5 [2]
мм;
Принимаем ближайшее стандартное значение аW ГОСТ=250 мм [2]
2.8.2 Определяем модуль зацепления:
mn=(0,01…0,02)·аW=(0,01…0,02)·250=2,5…5 мм
принимаем mn=2,5 мм [2]
2.8.3 Определяем основные параметры зубчатых колес:
а) суммарное число зубьев:
Z∑=
Z1= Z∑/(u+1)=200/(3,89+1)=40;
Z2= Z∑ – Z1 =200 – 40 = 160;
б) диаметры делительных окружностей
d = mn· z;
d1 = 2,5 · 40 = 100 мм;
d2 = 2,5 · 160 = 400 мм;
Проверка: аW= (d1 + d2)/2;
250 = (100 + 400)/2;
250 = 250.
в) диаметры окружностей вершин:
da1 = d1 + 2·mn = 100 + 2·2,5 = 105 мм;
da2 = d2 + 2·mn = 400 + 2·2,5 = 405 мм;
г) диаметры окружностей впадин:
df1 = d1 – 2,5·mn= 100 – 2,5·2,5 = 93,75 мм;
df2 = d2 – 2,5·mn= 400 – 2,5·2,5 = 393,75 мм;
д) ширина колеса и шестерни:
b2 = Ψba· aW= 0,25 · 250 = 62 мм;
b1 = b2 + 4…8 = 62 + 4…8 = 66…70 мм;
Принимаем b1 = 66 мм.
2.9 Проверочный расчет цилиндрической прямозубой передачи.
2.9.1 Уточняем коэффициент нагрузки:
Для отношения Ψbd= b2/d1 = 62/100 = 0,62 , при несимметричном расположении колес относительно опор, КНβ = 1,06[2]
2.9.2 Определение окружной скорости колес и степени точности передачи:
м/с;
Принимаем 8-ю степень точности по ГОСТ 1643-81[2]
2.9.3 Определяем коэффициент нагрузки:
KH=KHβ·KHα·KHV= 1,06·1·1,05 = 1,11 ;
где KHα- коэффициент неравномерности нагрузки между зубьями;
KHα=1; [2]
KHV- коэффициент динамической нагрузки,
KHV=1,05 [2]
... и отдельных элементов привода [Л1] (табл. 1.2.1). Для нашего привода (рис.1): Рисунок 1 – Схема привода: 1 – электродвигатель, 2 – ременная передача, 3 – редуктор конический одноступенчатый, 4 – цепная передача. Расчетная мощность электродвигателя, кВт: ; (1.2) На основании рекомендуемых min и max величин передаточных чисел u для ...
... двигателя и добиваемся его реализации путем изменения числа зубьев в приводе, сохраняя при этом общее число зубьев в сумме. На рисунке 1 приведена принципиальная кинематическая схема привода главного движения станка с учетом индивидуального задания, согласно которому общее передаточное отношение . Рисунок 1 – Кинематическая схема привода 1.1.2 Выбор двигателя Для выбора двигателя ...
ский расчет привода главного движения 3.1 Определение предельных чисел оборотов шпинделя 3.2 Определение числа ступеней АКС 3.3 Определение передаточных отношений 3.4 Расчет числа зубьев передач 4 Расчет поликлиноременной передачи 5 Выбор материала для изготовления зубчатых передач АКС 6 Расчет закрытой зубчатой передачи 7 Проверочный расчет зубчатых передач 8 Расчет валов АКС. 9 Расчет ...
... w и Т заносятся в таблицу 3.1. Примечание. Для одноступенчатого редуктора крутящий момент определяется по формуле , [Н·м]; , [Н·м]; [Н·м]; , [Н·м]. [Н·м]. Расчет клиноременной передачи Расчет клиноременной передачи проводим исходя из ранее рассчитанной мощности электродвигателя, Рэд и принятого передаточного отношения клиноременной передачи iр.п.=2. Определение сечения ремня ...
0 комментариев