Министерство образования Республики Беларусь
Учреждение образования
«Гродненский государственный университет имени Янки Купалы»
Технологический колледж
Специальность: 2-360331 «Монтаж и эксплуатация
электрооборудования»
Группа МиЭЭ-17з
КУРСОВАЯ РАБОТАпо дисциплине
«Теоретические основы электротехники»
Расчет линейных электрических цепейпеременного тока
Вариант №44
Разработал: Куликов А.Г.
Руководитель: Дубок Н.Д.
Заданы три приёмника электрической энергии со следующими параметрами: Z 1 = -j65 Ом, Z 2 = 14+j56 Ом, Z 3 =56- j23 Ом. Рассчитать режимы работы электроприёмников при следующих схемах включения:
1.Присоединить приёмники последовательно к источнику с напряжением U = 300 В. Определить полное сопротивление цепи Z, ток I, напряжения на участках, угол сдвига фаз, мощности участков и всей цепи, индуктивности и ёмкости участков. Построить топографическую векторную диаграмму цепи.
2. Присоединить приёмники параллельно к источнику с напряжением
U = 300 В. Определить токи в ветвях и в неразветвленной части цепи, углы сдвига фаз в ветвях и во всей цепи, мощности ветвей и всей цепи. Построить векторную диаграмму цепи.
3. Составить из приёмников цепь с двумя узлами, включив в каждую
ветвь соответственно электродвижущую силу E2=230 В и Е3 = j240 B. Рассчитать в комплексной форме токи в ветвях, напряжения на участках, мощности источников и приёмников, составить уравнение баланса мощностей. Построить векторную диаграмму в комплексной плоскости. Для расчёта применить метод контурных токов.
4. Соединить приёмники в звезду с нулевым проводом (ZN = -j32 Ом), и подключить их к трёхфазному источнику с линейным напряжением UЛ =380 В. Определить фазные токи и напряжения источника, напряжение смещения нейтрали и ток в нулевом проводе. Построить топографическую векторную диаграмму в комплексной плоскости.
5. Соединить приёмники в треугольник и подключить его к тому же источнику трехфазного напряжения. Определить фазные и линейные напряжения и токи, мощности фаз и всей цепи. Построить векторную диаграмму цепи в комплексной плоскости.
6. Присоединить приёмники последовательно к источнику несинусоидального тока i=7Sin(wt+130)+1,2Sin(2wt-860)+0,4Sin3wt A. Определить действующие значения тока и напряжения, активную мощность цепи. Записать уравнения мгновенных значений напряжения в цепи. Значения сопротивлений считать для частоты первой гармоники.
Частоту напряжения считать равной f = 50 Гц.
1 Расчёт неразветвлённой цепи с помощью векторных диаграмм
В задании на курсовую работу сопротивления даны в комплексной форме. Так как расчёт цепи нужно выполнить с помощью векторных диаграмм, определяем соответствующие заданным комплексам активные и реактивные сопротивления: XС1= 65 Ом, R2 = 14 Ом, XL2=56 Ом, R3=56 Ом ,ХC3= 23 Ом.
Из заданных приёмников составляем неразветвлённую цепь (рис. 1).
Рисунок 1
Определяем активные и реактивные сопротивления всей цепи:
R = R2+ R3= 14 + 56 = 70 Ом;
X = -XC1+ XL2 – XC3 = - 65 + 56 - 23 = - 32 Ом.
Полное сопротивление всей цепи тогда определяем из выражения:
Z = = = 77 Ом.
Ток в цепи будет общим для всех приёмников и определится по закону Ома:
I = U / Z = 300/77 = 3.9 A.
Угол сдвига фаз между напряжением и током определяется по синусу
Sin j = X / Z или тангенсу Tg j = X / R,
так как эти функции являются нечётными и определяют знак угла “плюс” или “минус”. Положительный знак угла указывает на активно-индуктивный (или чисто индуктивный) характер нагрузки, а отрицательный знак угла указывает на активно-ёмкостный (или чисто ёмкостный) характер. Таким образом, угол сдвига фаз между напряжением и током определим по синусу
Sin j = X/Z = - 32/77 = - 0,4156;j = - 24.56°; Cos j = 0,9096.
Напряжения на участках цепи определяем также из формулы закона Ома:
UC1= I * XC1 = 3.9 *65 =253.5 B.
UR2 = I * R2 = 3.9 * 14 = 54.6 B.
UL2 = I * XL2 = 3.9 * 56 = 19.5 B
UR3 = I * R3 = 3.9 * 56 = 19.5 B
UC3 = I * XC3 = 3.9 * 23 = 89.7 B.
Определяем активные и реактивные мощности участков цепи:
QC1= I2 * XC1 =3.92 *65 = 989 вар.
P2 = I2 * R2 =3.92 * 14 = 213 Bт.
QL2 = I2 * XL2 = 3.92*56 = 852 вар.
P3=I2*R3 = 3.92*56= 852 Вт
QС3 = I2 * XС3 = 3.92 *23 =350 вар.
Активная, реактивная и полная мощности всей цепи соответственно будут равны:
P = P2+ P3= 213 +852 =1065 Вт.
Q = -QC1+ QL2 - QС3= -989+852- 350 = - 487 вар.
S = = =1171 B*A.
Полную, активную и реактивную мощности всей цепи можно определить также по другим формулам:
S = U * I =300 *3.9 =1170 В*А.
Р = S * Cos j =1170* 0,9096 =1064 Вт,
Q = S * Sin j=1170*( - 0,4154) = - 486 вар.
Определяем ёмкость и индуктивность участков. Угловая частота ω = 2 πf = 2 * 3,14 * 50 = 314 с-1
C1 = 1/wXc1=1/(314*65)= 0,000049 Ф = 49 мкФ
L2 = XL2/w = 56/314 = 0,178 Гн
С3 = 1/wXС3 = 1/(314*23) = 0,000138 Ф = 138 мкФ.
Для построения векторной диаграммы задаёмся масштабами тока и напряжения, которые будут соответственно равны MI = 0,25 A/см и MU = 25 B/см.
Построение топографической векторной диаграммы начинаем с вектора тока, который откладываем вдоль положительной горизонтальной оси координат. Векторы напряжений на участках строятся в порядке обтекания их током с учётом того, что векторы напряжений на активных элементах R2 и R3 совпадают по фазе с током и проводятся параллельно вектору тока. Вектор напряжения на индуктивности L2 опережает ток по фазе на угол 900 и поэтому откладывается на чертеже вверх по отношению к току. Векторы напряжений на ёмкости С1 и отстают от тока по фазе на угол 900 и откладываются на чертеже вниз по отношению к току. Вектор напряжения между зажимами цепи проводится с начала вектора тока в конец вектора С3. На векторной диаграмме отмечаем треугольник напряжений ОАВ, из которого активная составляющая напряжения
Uа = UR2 + UR3
и реактивная составляющая напряжения
Uр = -UС1 + UL2 – UС3.
Топографическая векторная диаграмма построена на рисунке 2.
Ua
O
φ
MI= 0,5 А/см
МU= 25 В/см
UC1 U UP
UR3
UR2 UL2
UC3
Рисунок 2
2 Расчёт разветвлённой цепи с помощью векторных диаграммПрисоединяем заданные приёмники параллельно к источнику напряжения. Это значит, что цепь состоит из трех ветвей, для которых напряжение источника является общим. Схема цепи показана на рисунке 3.
Расчёт параллельной цепи выполняем по активным и реактивным составляющим токов.
Рисунок 3
Этот метод предусматривает использование схемы замещения с последовательным соединением элементов. В данном случае три параллельные ветви рассматриваются как три отдельные неразветвлённые цепи, подключенные к одному источнику с напряжением U. Поэтому в начале расчёта определяем полные сопротивления ветвей:
Z1 = Хс1 = 65 Ом.
Z2 = = = 57.7 Ом.
Z3 = = 60.5 Ом.
Углы сдвига фаз между напряжениями и токами в ветвях определяются также по синусу (или тангенсу):
Sinφ1 = -1; j1 = - 90°;Cosφ1 = 0
Sinφ2 = XL2 / Z2 = 56 / 57.7 = O.9705; j2 = 76.05°; Cosφ2 = 0.241.
Sinφ3 = - XC3/Z3= - 23/60.5= - 0.38; φ3 = - 22.34°; Cosφ3 = 0.9249.
Затем можно определять токи в ветвях по закону Ома:
I1 = U / Z1 =300 / 65 = 4.62 А.
I2 = U / Z2 = 300 / 57.7 = 5.2 А.
I3 = U / Z3 = 300 / 60.5 = 4.96 А.
Для определения тока в неразветвлённой части цепи нужно знать активные и реактивные составляющие токов в ветвях и неразветвленной части цепи:
Ip1 = I1*Sinj1= 4.62*(- 1) = - 4.62 A.
Ia2 = I2 * Cosφ2 = 5.2 * 0,241 = 1.25 A;
Ip2 = I2 * Sinφ2 = 5.2 * 0,9705 = 5.05 A;
Ia3 = I3*Cosj3 = 4.96*0.9249 = 4.59 A.
Ip3 = I3*Sinj3 = 4.96*(- 0.38) = - 1.88 A.
Активная и реактивная составляющие тока в неразветвлённой части цепи:
Ia = Ia2 + Ia3 = 1.25+4.59 = 5.84 A.
Ip = Ip1 + Ip2 + Ip3 = - 4.62+5.05 – 1.88 = - 1.45 A.
Полный ток в неразветвлённой части цепи:
I = = = 6.02 A.
Угол сдвига фаз на входе цепи:
Sinφ = IP / I = - 1.45/6.02 = - 0.2409; φ = -13.940; Cosφ = 0.9706.
Активные, реактивные и полные мощности ветвей:
QC1 = I12 *XC1= 4.622 *65 = 1387 вар.
S1 = U*I1 = 300*4.62 = 1387 B*A.
P2 = I22 * R2 = 5.22* 14 = 379 Вт.
QL2 = I22 * XL2 = 5.22 * 56 =1514 вар.
S2 = U * I2 = 300 * 5.2 =1560 В*А.
P3 = I32*R3 = 4.962*56 = 1378 Bт
QC3 = I32 * XC3 = 4.962 * 23 =566 вар.
S2 = U * I2 = 300 *4.96 = 1488 В*А
Активные, реактивные и полные мощности всей цепи:
P = P2 + P3 = 379 + 1378 =1757 Вт.
Q = - QC1 + QL2 - QC3 = - 1387 +1514 -566 = - 439 вар.
S = = = 1811 В*А, или
S = U * I = 300*6.02 = 1806 В*А.
P = S * Cosφ = 1806 * 0,9706 = 1753 Вт.
Q = S * Sinφ = 1806*(- 0.2404) = - 434 вар.
Для построения векторной диаграммы задаёмся масштабами напряжений MU = 25 В/см и токов MI = 0.5 А/см. Векторную диаграмму начинаем строить с вектора напряжения, который откладываем вдоль горизонтальной положительной оси. Векторная диаграмма токов строится с учётом того, что активные токи Ia2 и Ia3 совпадают по фазе с напряжением, поэтому их векторы параллельны вектору напряжения; реактивный индуктивный ток Ip2 отстает по фазе от напряжения, и его вектор строим под углом 900 к вектору напряжения в сторону отставания; реактивные емкостные токи Ip1 и Ip3 опережают по фазе напряжение, и их векторы строим под углом 90° к вектору напряжения в сторону опережения. Вектор тока в неразветвлённой части цепи строим с начала построения в конец вектора емкостного тока Ip3. Векторная диаграмма построена на рисунке 4.
Ia2
MI= 0,5 А/см
МU= 25 В/см
I2
I1=Ip1 Ip2
OIa U
Ia3
I3 Ip3 Ip
I
Рисунок 4
... будущего специалиста к работе на производстве. 1. Анализ электрического состояния линейных электрических цепей постоянного тока Схема электрической цепи постоянного тока: R2 I2 R7 I5 E1,r02 I7 R1 I3 R5 R3 R4 I4 I6 I1 E2,r02 R6 Рис.1.0 ...
... контура в той последовательности, в которой производим обход контура, прикладывая сопротивления друг к другу, по оси ординат - потенциалы точек с учетом их знака. рис.1.7 1.2 Расчет нелинейных электрических цепей постоянного тока Построить входную вольтамперную характеристику схемы (рис.1.8) Определить токи во всех ветвях схемы и напряжения на отдельных элементах, используя полученные ...
... по частям, как в пункте I}= II. В результате получаем закон изменения искомой величины при подаче на вход цепи импульса заданной формы: Расчет и построение графика спектральной плотности прямоугольного импульса Основой спектрального анализа является то, что любой непрерывный сигнал можно представить как периодический с периодом . Энергия ...
чает в себя источники мощности (активные элементы) и приемники (пассивные элементы). В качестве пассивного линейного элемента в цепях постоянного тока выступает резистор, имеющий электрическое сопротивление R. Единица измерения Ом. Величина, обратная сопротивлению, называется электрической проводимостью: G = 1/R. Единица измерения См - сименс. В качестве активных элементов - источников ...
0 комментариев