3 Расчёт сложных цепей переменного тока символическим методом

Электрическая схема цепи и комплексная схема замещения представлены на рисунке 5а и б соответственно.


 Рисунок 5

Намечаем в независимых контурах заданной цепи, как показано на рисунке 5б, контурные токи IK1 и IK2 – некоторые расчётные комплексные величины, которые одинаковы для всех ветвей выбранных контуров. Направления контурных токов принимаются произвольно. Для определения контурных токов составляем два уравнения по второму закону Кирхгофа:

IK1*(Z1 + Z2) – IK2*Z2 = E2

- IK1*Z2+IK2*(Z2+Z3)= E3 - E2

Подставляем данные в систему:

IK1*(- j65+14+j56) – IK2*(14+j56) = 230

-IK1*(14+j56) +IK2 *(14+j56+56 – j23) = j240-230

IK1*(14-j9) – IK2*(14+j56) = 230

-IK1*(14+j56) + IK2*(70+j33) = -230+ j240

Решаем систему с помощью определителей. Определитель системы:


=1277-j168+2940– j1568=4217-j1736

Частные определители :

= = 16100+j7590–16660-j9520= -560–j1930.

 =-1060+j5430+3220+j12880 = 2160+j18310

Определяем контурные токи:

IK1 =  =  = 0.0476-j0.438 A.

IK2 =  =  = - 1.09+ j3.89 A.

Действительные токи в ветвях цепи определяем как результат наложения контурных токов:

I1 = IK1 = 0.0476 – j0.438 = 0.441 A

I2 = IK1-IK2 = 0.0476.- j0.438+1.09- j3.89 = 1.14 – j4.33 = 4.48 A

I3 = IK2 = -1.09 + j3.89 = 4.04 A.

Составляем уравнение баланса мощностей в заданной электрической цепи. Определяем комплексные мощности источников:


SE2 = E2* =230(1.14+j4.33) = 262+j996=1030 B*A

SE23= E3* = j240*(-1.09 – j3.89) = 912 – j262 = 949 B*A

Определяем комплексные мощности приёмников электрической энергии:

S1 = I12*Z1 =0.4412*( – j65) = – j12.6 =12.6 B*A

S2 = I22*Z2 = 4.482*(14+j56) = 281+j1124=1159 B*A

S3 = I32*Z3 = 4.042*(56 – j23) = 914– j375 =988B*A.

Уравнение баланса комплексных мощностей!

SЕ1 + SE2 = S1 + S2 + S3;

262+j996+912-j262 = – j12.6+281+j1124+914– j375

1174+ j734 @ 1182+ j749; 1385@ 1400  

Относительная и угловая погрешности незначительны.

Для построения векторной диаграммы задаёмся масштабами токов MI = 0.25 А/см и ЭДС ME = 50 В/см. Векторная диаграмма в комплексной плоскости построена на рисунке 6.

4 Расчёт трёхфазной цепи при соединении приемника в звезду

Схема заданной цепи изображена на рисунке 7.

Определяем систе­му фазных напряжений генератора. Фазное напряжение:


UФ = Uл/= 380/1,73=220 В.

Комплексные фазные напряжения генератора:

UA = UФ = 220 B

UB = UAe-j120 = 220e-j120 = –110 – j191 B

UC = UAej120 = 220ej120 = –110 + j191 B

Определяем полные проводимости фаз приёмника:

YA =  = j0,01538 См.

YB =  = 0.0042-j0.0168 См.

YC =  = 0.0153+j0.00628Cм.

 YN=== j0.03125 См.

Рисунок 7


Узловым напряжением является в данном случае напряжение смещения нейтрали, которое определяется по формуле:

UN=

= (j3.38-3.67+j1.05-2.88+j2.23)/(0.05075+j0.00486) = (-6.55+j6.66)/(0.0195+j0.03611)= 67+j218 = 228B.

Определяем фазные напряжения на нагрузке:

UA/ = UA – UN = 220- (67+j218) = 153-j218 = 266 B.

UB/ = UB – UN = (–110-j191) - (67+j218) = -177-j409 =446 B.

UC/ = UC–UN=(–110+j191) - (67+j218) = -177 – j27 = 179 B.

Определяем токи в фазах нагрузки:

IA = UA/*YA = (153-j218)*(j0.01538) = 3.35+j2.35 = 4.1 A.

IB = UB/*YB = (-177-j409)*(0.0042-j0.0168) = -7.61+j1.26 =7.72A.

IC=UC/*YC= (-177 – j27)*(0.0153+j0.00628)=- 2,53–j1,52= 2,96A.

IN= UN*YN = (67+j218)*j0.03125 = - 6,8 + j2,09 = 7,12*

Проверяем правильность определения токов по первому закону Кирхгофа для точки N’:


 IA + IB + IC =IN

3.35+j2.35 -7.61+j1.26 - 2,53 – j1,52 @ - 6,8 + j2,09;

 - 6,79+j2.09 @ - 6,8 + j2,09.

Определяем комплексные мощности фаз и всей цепи:

SA = IA2 * Z1 = 4,12*(-j65) = -j1092=1092 B*A.

SB = IB2 * Z2 = 7,722*(14+j56) = 834+j3338 =3440 B*A

SC = IC2 * Z3 = 2,962*(56-j23) = 491 – j 202 = 530 B*A.

 S= SA + SB + SC = -j1092+ 834+j3338+ 491 – j 202 = 1325+j2044 =

 = 2436 B*A.

Для построения векторной диаграммы задаёмся масштабами токов MI = 1 А/см и напряжений MU = 40 B/см. Векторная диаграмма на комплексной плоскости построена на рисунке 8.

5 Расчёт трёхфазной цепи при соединении приёмника в треугольник

Схема заданной цепи изображена на рисунке 9

 

 Рисунок 9.


В данном случае линейные напряжения генератора являются фазными

напряжениями нагрузки:

UAB = UЛ = 380 В.

UBC = 380 = -190-j329 B.

UCA = 380= -190+j329 B.

Определяем систему фазных токов нагрузки:

IAB = =  = j5,85 = 5,85 A

IBC =  =  = -6,32+j1,81 = 6,58 A

ICA =  =  = -4,96+j3,83 = 6,27 A

Систему линейных токов определяем из соотношений:

IA = IAB – ICA = j5,85+4,96-j3,83 = 4,96+j2,02 = 5,36 A

IB = IBC – IAB = -6,32+j1,81-j5,85 = -6,32-j4,04 = 7,5A

IC = ICA – IBC = -4,96+j3,83+6,32-j1,81 = 1,36+j1,92 =2,35 A

Определяем мощности фаз приемника:

 

SAB=IAB2*Z1 = 5,852*(-j65) = -j2224 = 2224B*A.

SBC = IBC2*Z2 = 6,582*(14+j56) = 606+j2425 = 2499B*A.

SCA = ICA2*Z3 = 6,272*(56 – j23) =2201– j904 = 2380*B*A.

Определяем мощность трехфазной нагрузки:

SAB+SBC +SCA = -j2224+606+j2425+2201– j904 =2807 – j703 =

= 2894B*A.

Для построения векторной диаграммы задаёмся масштабами токов MI =1 A/см и напряжений MU = 50A/см. Векторная диаграмма построена на рисунке 10.

6 Расчёт неразветвлённой цепи с несинусоидальными напряжениями и токами

 

Составляем схему заданной цепи, подключая последовательно соединённые приёмники к источнику несинусоидального напряжения, под действием которого в цепи возникает ток с мгновенным значением

i=7Sin(wt+130)+1,2Sin(2wt-860)+0,4Sin3wt A, который на схеме замещения представляем как последовательно соединённые три источника переменного напряжения u1, u2 и u3 c разными частотами (рисунок 11)

Величины сопротивлений заданы для частоты первой гармоники:

XC11 = 18 Ом, R2 = 23 Ом, XL21 = 14 Ом, R3 = 12 Ом, XC31 = 62 Ом. Поскольку напряжения источников имеют разные частоты, то и реактивные сопротивления для них будут иметь разные величины. Активные сопротивления считаем от частоты не зависящими. Поэтому расчёт ведём методом наложения, то есть отдельно для каждой гармоники.

.

Рисунок 11.


Первая гармоника

Определяем активное и реактивное сопротивления всей цепи:

R = R2 + R3 = 14+56 = 70 Ом. X1 = -XC11+ XL21- XC31 = - 65+56–23 =

= -32 Ом.

Полное сопротивление цепи:

Z1 =  =  = 76,7 Ом.

Амплитудные значения напряжения и тока:

 Im1 = 7 A, Um1 = Im1*Z1= 7*76.7 =537 B.

Действующие значения напряжения и тока:

U1 = Um1 /  = 537 / 1,41 = 381 B.

I1 = Im1 /  = 7 / 1,41 = 4.96 A.

Угол сдвига фаз между напряжением и током определяем по синусу:

Sinφ1 = X1/Z1 = -32/76.7 = - 0.4172. j1= - 24.66°, Cosφ1=0.9088.

Активная и реактивная мощности первой гармоники:

P1 = I12 * R = 4.962 * 70 =1722 Вт.

Начальная фаза тока определяется из соотношения:


φ1 = yU1 – yI1, отсюда yU1 =yI1 + j1 = 13°- 24.66°= - 11.66°

 Мгновенное значение напряжения первой гармоники

 u1= Um1 * Sin (ωt + yU1) = 537 * Sin (ωt – 11.66°) B.

Вторая гармоника.

Для остальных гармоник напряжения расчёты приводим без дополнительных разъяснений.

X2= XC11/ 2 + XL21* 2 - XC31 / 2 = -65/ 2 + 56* 2 - 23 / 2 = 68 Ом.

Z2===97.6 Ом,

Im2=1.2 A, Um2= Im2 *Z2=1.2*97.6 =117 B.

 U2= Um2/ =117 / 1,41 = 83 B.I2= Im2/ = 1.2 / 1,41 = 0.85 A.

Sin φ2= X2/ Z2= 68/97.6= 0,6967.j2 = 44.16°, Cos φ2 = 0,7173.

P2 = I22 * R2 = 0.852 *70 = 51 Вт.

yU2 =yI2 + j2 = -86°+ 44.16°= - 41.9°

u2= Um2 * Sin (2ωt + yU2) = 117 * Sin (2ωt – 41.9°) B.

 

Третья гармоника

X3= XC11 /3 + XL11* 3 – XC31 / 3 = - 65 / 3 + 56* 3 - 23 / 3 =139 Ом.

Z3 = = 156 Ом. Im3 =0.4 A, Um3 = Im3 *Z3 =0.4 *156 =

 = 62.4 B.

U3= Um3/  =62.4/  = 44.3 B. I3 = Im3/ = 0.4 / 1,41 = 0.28 A.

Sin φ3 = X3 / Z3 =139 /156 = 0,891. j3 = 63°. Cos φ3 = 0,454.

P3 = I32 * R = 0.282 *70 = 0.5 Вт.

yU3 =yI3 + j3 = 63°.

u3= Um3 * Sin (3ωt + yU3) =44.3 * Sin (3ωt +63°) B.

Определяем действующие значения тока и напряжения:

I =  =  = 5.04 A.

U =  =  = 559 B.

Активная и реактивная мощности цепи:

P = P1+P2+P3=1722+51+0.5=1774 Вт.

Средневзвешенный коэффициент мощности цепи:

Cos Х = Р / (U * I) = 1774/ (559 *5.04) = 0,6296.

Уравнение мгновенных значений напряжения между зажимами цепи:

u=u1+u2+u3=537 * Sin (ωt – 11.66°)+117 * Sin (2ωt – 41.9°)+

+44.3 * Sin (3ωt +63°) B.


Литература

1.  Ф.Е. Евдокимов. Теоретические основы электротехники. - М. “Высшая школа “,1981 г.

2.  В.С. Попов. Теоретическая электротехника. – М. “Энергия”,

1978 г.

3.  Ю.В. Буртаев, П. И. Овсянников. Теоретические основы электротехники.– М. “Энергоатомиздат”, 1984 г.

4.  Л.А. Частоедов. Электротехника. - М. “Высшая школа”, 1984 г.

5.  М.Ю. Зайчик. Сборник задач и упражнений по теоретической электротехнике. – М. “Энергоатомиздат” , 1988 г.


Информация о работе «Расчет линейных электрических цепей переменного тока»
Раздел: Физика
Количество знаков с пробелами: 17743
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
19551
3
20

... будущего специалиста к работе на производстве. 1. Анализ электрического состояния линейных электрических цепей постоянного тока Схема электрической цепи постоянного тока: R2 I2 R7 I5 E1,r02 I7 R1 I3 R5 R3 R4 I4 I6 I1 E2,r02 R6 Рис.1.0 ...

Скачать
21327
20
21

... контура в той последовательности, в которой производим обход контура, прикладывая сопротивления друг к другу, по оси ординат - потенциалы точек с учетом их знака. рис.1.7 1.2 Расчет нелинейных электрических цепей постоянного тока Построить входную вольтамперную характеристику схемы (рис.1.8) Определить токи во всех ветвях схемы и напряжения на отдельных элементах, используя полученные ...

Скачать
13339
0
34

... по частям, как в пункте I}=                II.                        В результате получаем закон изменения искомой величины при подаче на вход цепи импульса заданной формы: Расчет и построение графика спектральной плотности прямоугольного импульса Основой спектрального анализа является то, что любой непрерывный сигнал можно представить как периодический с периодом . Энергия ...

Скачать
20700
2
35

чает в себя источники мощности (активные элементы) и приемники (пассивные элементы). В качестве пассивного линейного элемента в цепях постоянного тока выступает резистор, имеющий электрическое сопротивление R. Единица измерения Ом. Величина, обратная сопротивлению, называется электрической проводимостью: G = 1/R. Единица измерения См - сименс. В качестве активных элементов - источников ...

0 комментариев


Наверх