1.1.3 Диафрагмы

Диафрагмы в цилиндре высокого давления и в паровпускной части цилиндра среднего давления до 16 ступени, выполнены сварными, а в зоне умеренных и низких температур 17 ступени – литыми чугунными с залитыми лопатками из нержавеющей стали. Диафрагмы со 2-ой по 11-ую ступени устанавливаются в выточки, расположенные непосредственно в корпусах цилиндров, диафрагмы с 12-ой по 27-ую ступени установлены в стальных литых обоймах. Все диафрагмы подвешены у разъема на лапках. Нижние половины диафрагм фиксируются относительно цилиндра или обойм в поперечном направлении приварными шпонками, а в 25-ой и 27-ой ступенях – цилиндрическими штифтами. Центруются только нижние половины диафрагм. Верхние половины при закрытия цилиндра или обойм фиксируются относительно нижних половин у сварных диафрагм - вертикальными шпонками, а у литых – лапками, которые одновременно служат для подвески диафрагм. Чугунные диафрагмы в аксиальном направлении фиксируются штифтами на ободе.

1.1.3 Регулирующие диафрагмы

Ступени №24 и №26 отопительного отбора управляют перепуском пара в последующие ступени части низкого давления и представляют собой комбинацию неподвижных чугунных диафрагм с поворотными дроссельными кольцами, изготовленными из стали. При монтаже должна быть обеспечена одновременность открытия или закрытия обоих поворотных колец. Привод регулируемых поворотных колец, прикрывающих или открывающих сопла, осуществляется при помощи масляного поршневого сервомотора, соединенного системой рычагов с поворотными кольцами.


1.1.4 Концевые уплотнения

Концевые уплотнения турбины - паровые лабиринтного типа, приняты в виде стальных колец из сегментов с закрепленными в них гребешками, образующие лабиринт вместе с канавками на роторе. В переднем и заднем уплотнениях ЦВД и переднем ЦСД сегменты уплотнений установлены на плоских пружинах в стальных обоймах; обоймы подвешены у разъема на лапках и зафиксированы в поперечном направлении приваренными шпонками в нижней половине цилиндра. В заднем уплотнении ЦСД аналогичные сегменты установлены в сварно-литом корпусе заднего уплотнения, которые на болтах крепится к выхлопной части среднего давления. В концевых уплотнениях ЦНД сегменты уплотнений устанавливаются также на плоских пружинах в сварных обоймах. Обоймы в свою очередь устанавливаются на радиальных штифтах и крепятся аксиально к выхлопному патрубку. Сегменты уплотнений подвешиваются у разъема на лапках-винтах.

Подвод пара в концевые уплотнения ЦНД и отсос паровоздушной смеси осуществляется через трубы, приваренные к литым корпусам уплотнений и пропущенные в пространстве между коробками подшипников и стенками выхлопных частей. Подача пара в последние отсеки производится из коллектора при давлении несколько выше 1 ата. На каждой линии имеется свой вентиль, позволяющий при необходимости, производить настройку сопротивлений этих линий для получения одинаковых давлений. Коллектор питается паром из деаэратора 6 ата. Давление пара в коллекторе поддерживается автоматически на заданном уровне с помощью регулятора лабиринтного пара.

Из крайних отсеков переднего и заднего уплотнений ЦВД, ЦСД и ЦНД, а также из верхних отсеков уплотнений штоков стопорного и регулирующих клапанов пар отсасывается специальным эжектором, создающим в них небольшое разрежение. Благодаря этому исключается парение уплотнений. Вестовые трубы отсутствуют. В схеме предусмотрен отсос пара из третьих камер концевых уплотнений в сальниковый подогреватель, в котором поддерживается разряжение.

При переходе турбины на режим с использованием встроенного пучка в конденсаторе пар из уплотнений должен срабатываться в конденсатор через пароохладитель. Для этого необходимо сначала подать конденсат в форсунку пароохладителя и только вслед за этим открыть задвижку Dу=400 мм с электроприводом на линии подачи пара в конденсатор.

Для уменьшения величины относительного укорочения ротора ВД при сбросе нагрузки, разгружении турбины, остановки и пусках из горячего состояния предусмотрен подвод горячего пара в передние уплотнения ЦВД. Первая (основная) линия обеспечивает при работе турбины постоянный подвод горячего пара от штоков регулирующих клапанов к участку трубопровода между коллектором уплотнений и перед ним уплотнением ЦВД. Тем самым увеличивается удлинение ротора и предотвращается опасное укорочение ротора при сбросе нагрузки. При пусках турбины из горячего состояния, когда в паровых коробках давление пара низкое и пар от штоков клапанов не поступает, для уменьшения относительного укорочения ротора открытием электровентеля обеспечивается подвод свежего дросселированного пара в переднее уплотнение через коллектор отсоса пара от штоков клапанов на деаэратор. Такой подвод исключает также охлаждение паровых и примыкающих к ним участков цилиндра относительно холодным паром от деаэратора, подаваемым к штокам клапанов при пусках турбины.


2. Исходные данные для расчёта принципиальной тепловой схемы теплоцентрали на базе турбоустановки Т-100/110-130

По заданной температуре окружающей среды , по температурному графику сетевой воды (рисунок Д.1) и диаграмме режимов Т-100-130, определяем:

- отопительная нагрузка ТЭЦ:

;

- температура сетевой воды в подающей магистрали (ПС):

;

- температура воды после нижнего сетевого подогревателя (ПСГ1):

;

- температура воды после верхнего сетевого подогревателя (ПСГ2):

;

- температура обратной сетевой воды (ОС):

.

По таблицам термодинамических свойств воды и водяного пара в состоянии насыщения, используя температуры, находим:

- энтальпия сетевой воды в подающей магистрали:

;

- энтальпия воды после ПСГ2:

;

- энтальпия воды после ПСГ1:

;

- энтальпия сетевой воды в обратной магистрали

.

Исходные данные, необходимые для расчёта тепловой схемы теплоэлектроцентрали на базе турбоустановки Т-100/110-130, сведены в таблицу 2.

Таблица №2-Исходные данные для расчёта турбоагрегата Т-100/110-130

Исходные данные Обозначение Значение
1 2 3
Начальное давление пара, МПа P0 12,75
Начальная температура пара, оС t0 565
Расход пара на турбину, кг/с D0 128
Давление пара, поступающего в конденсатор, МПа Pk 0,0054
Число регенеративных отборов, шт. z 7
Давление пара в деаэраторе питательной воды, МПа PДПВ 0,588
Конечная температура регенеративного подогрева питательной воды, оС tпв 232
Температура наружного воздуха, оС tнар – 5
Процент утечки пара и конденсата, % αут 1,5
Коэффициент теплофикации αТ 0,8
Расход пара из деаэратора на концевые уплотнения и эжектор, кг/с DЭ.У. 1,8
КПД парогенератора ηПГ 0,92
КПД подогревателей ηПО 0,98
КПД питательного насоса ηПН 0,8
Внутренние относительные КПД турбины
часть высокого давления η0iЧВД 0,8
часть среднего давления η0iЧСД 0,85
часть низкого давления η0iЧНД 0,5
Параметры свежего пара у парогенератора
давление, МПа PПГ 13,8
температура, оС tПГ 570
энтальпия, кДж/кг hПГ 3520
КПД элементов тепловой схемы
КПД расширителя непрерывной продувки ηР 0,98
КПД нижнего сетевого подогревателя (ПСГ1) ηПСГ1 0,98
КПД верхнего сетевого подогревателя (ПСГ2) ηПСГ2 0,98
КПД деаэратора питательной воды ηДПВ 0,995
КПД охладителя продувки ηОП 0,995
КПД смесителей ηСМ 0,995
КПД подогревателя уплотнений ηПУ 0,995
КПД эжектора уплотнений ηЭУ 0,995
КПД генератора – механический ηМ 0,98
КПД генератора – электрический ηЭ 0,998
КПД трубопроводов ηТ 0,92
2.1 Определение давления пара в отборах турбины

Принимаем недогрев сетевой воды в подогревателях:

·  нижний сетевой подогреватель:  ;

·  верхний сетевой подогреватель:  ,

принятые значения q i заносим в табл. 3.2.

Определяем из температурного графика сетевой воды (рис. А.1)

температуру воды за сетевыми подогревателями.

Результат заносим в табл. 3.2:

·  нижний сетевой подогреватель:  ;

·  верхний сетевой подогреватель:  .

Рассчитываем температуру насыщения конденсата греющего пара в сетевых подогревателях НС и ВС ( результат заносим в табл. 3.2):

·  нижний сетевой подогреватель:

;

·  верхний сетевой подогреватель:

.

По таблицам насыщения для воды и водяного пара по температуре насыщения находим давление насыщенного пара в ПСГ1 и ПСГ2 и его энтальпию (результат заносим в табл. 3.2.1.):

·  нижний сетевой подогреватель: ,h¢=354,6 кДж/кг;

·  верхний сетевой подогреватель: , h¢=441 кДж/кг.

Определяем давление пара в теплофикационных (регулируемых) отборах №6, №7 турбины с учётом принятых потерь давления по трубопроводам (результат заносим в табл. 3.2.1):

,

где  потери в трубопроводах и системах регулирования турбины

принимаем :, ;

;

,

.

По значению давления пара Р6 в теплофикационном отборе №6 турбины уточняем давление пара в нерегулируемых отборах турбины между нерегулируемым отбором №1 (ЧВД) и регулируемым теплофикационным отбором №6 (по уравнению Флюгеля - Стодолы), принимая для упрощения .


 ,

где - D0 , D, Р60, Р6 – расход и давление пара в отборе турбины на номинальном и рассчитываемом режиме, соответственно.

,

,

,

,

,

,

,

,

,


.

Рассчитываем давление насыщенного водяного пара в регенеративных подогревателях. Потери давления по трубопроводу от отбора турбины до соответствующего подогревателя принимаются равными ∆Р = 8 %:

,

,

,

,

,

.

Параметры пара и воды расчётной схемы приведены в таблице 3.1.



Информация о работе «Расчет принципиальной тепловой схемы паротурбинной установки типа Т-100-130»
Раздел: Физика
Количество знаков с пробелами: 55343
Количество таблиц: 7
Количество изображений: 16

Похожие работы

Скачать
43793
4
15

... мощности , МВт, где G0 – расход пара на турбину; Hi – действительный теплоперепад турбины;  – расход пара в конденсатор; - механический КПД, принят ; - КПД электрогенератора, принят ; Относительная ошибка . Расчет произведен верно. 7. Расчет показателей тепловой экономичности блока при работе в третьем расчетном режиме   7.1 Тепловая нагрузка ПГУ    кВт. ...

Скачать
72240
7
17

... ввиду сравнительно небольшого давления на входе (примерно 0,35 МПа).Принципиальная тепловая схема установки показана на рис.1. Рис. 1. Принципиальная тепловая схема турбоустановки с турбиной К-1000-60/1500-1 ПО " Турбоатом " А - питательная вода к ПГ; В - острый пар из ПГ; С - слив конденсата из конденсатора ТППН в основной конденсатор; D - конденсат от эжекторов в основной конденсатор; Е ...

Скачать
74799
32
28

... 4.1. Описание задания. Заменить в тепловой схеме второй (по ходу основного конденсата) подогреватель низкого давления смешивающего типа П7 (рис. 4.1.) на поверхностный и проследить влияние на тепловую экономичность. Рис. 4.1. Первоначальная схема включений ПНД. Эффективность регенеративного подогрева зависит от правильного выбора параметров пара регенеративных отборов, числа регенеративных ...

Скачать
18407
5
11

... турбоустановкой 0.995 -  - температура промперегрева 265.4 оС  - давление в деаэраторе 0.69 МПа  - давление в конденсаторе 0.04 МПа  - тепловая мощность, отдаваемая в теплосеть 22.2 МВт Рис. 1: Тепловая схема ПТУ К-500-65/3000. Рис. 2: Процесс расширения пара в турбине. Таблица параметров и расходов рабочего тела. При заполнении таблицы ...

0 комментариев


Наверх