91 кг/с. 3.2.6 Регенеративные подогреватели низкого давления

Рисунок 3.2.6.1- К определению D4

КПД подогревателей низкого давления .

Уравнение теплового баланса:


 ,

Расход греющего пара на ПНД-4:

,

ПНД-3

ПНД-3 рассматривается совместно со смесителем СМ1.

Рисунок 3.2.6.2-К определению D5

Уравнение теплового баланса:


Расход греющего пара на ПНД-3:

,

ПНД-2 и ПНД-1

Рисунок 3.2.6.3- К определению D6

ПНД2 рассматривается совместно с СМ2:

Рисунок 3.2.6.4- К определению D7


Уравнение теплового баланса ПНД-1:

,

.

Уравнение теплового баланса ПНД-2:

 

,

Решая совместно уравнения теплового баланса ПНД6 и ПНД7, получаем расходы греющего пара на ПНД6 и ПНД7 соответственно  .


3.2.7 Подогреватель сырой воды

Рисунок 3.2.7 - К определению расхода пара на обогрев сырой воды в подогревателе

Уравнение теплового баланса подогревателя сырой воды (ПСВ):

 

,

где q6 – количество теплоты, переданной в подогревателе паром из отбора №5 турбины.

подогрев воды в ПСВ, принимаем =140, кДж/кг,

140-45=95 кДж/кг.

Расход сырой воды : ==2,088+2,44=4,528 кг/с.

Расход пара определим из теплового баланса подогревателя химически очищенной воды:

.


3.2.8 Деаэратор добавочной воды

Рисунок 3.2.8 -К определению

Уравнение теплового баланса деаэратора химически очищенной воды:

Решая данное уравнение получили:

=1,017 кг/с.

3.2.9 Сальниковый подогреватель (ПС), сальниковый холодильник (СХ), паровой эжектор (ПЭ), конденсатор

Рисунок 3.2.9.2- К определению расхода пара на СХ, ПС, ПЭ.


Уравнение теплового баланса парового эжжектора:

.

Подогрев конденсата в ПЭ:

Уравнение теплового баланса сальникового холодильника:

.

Подогрев конденсата в СХ:

Уравнение теплового баланса подогревателя сальников:

 .

Подогрев конденсата в ПС:


Поток воды на рециркуляцию в соответствии с заданной энтальпией после ПС:

,

.

Кратность рециркуляции:

,

.

Уравнение материального баланса конденсатора. Поток конденсата.


Расчёт конденсатора проводим учитывая, что включён встроенный пучок для подогрева сетевой воды.

 

,

8,376-0,2806-0,183=8,84 кг/с.

3.2.10 Материальный баланс турбины

Расходы пара на регенеративные подогреватели и сетевую подогревательную установку, рассчитанные выше, представлены в таблице 3.2.10.

Таблица №3.2.10-Расходы пара по отборам турбины

№ отбора Обозначение Расход (кг/с) Расход (т/час)
1 D1=DП1 3,9428 14,2
2 D2=DП2 5,7744 20,78
3 D3=DП3+DД 1,553+2,081=3,634 13,0824
4 D4=DП4 1,9 6,84
5 D5=DП5+DКВ+DПСВ 8,1352 29,29
6 D6=DП6+DПСГ2 0,12+27,0815=27,2 100,152
7 D7=DП7+DПСГ1 40,35+0,2859=40,64 146,3

Суммарный расход пара по всем отборам:

Поток пара в конденсатор после турбины:

.

Погрешность по балансу пара и конденсата:


.

  3.3 Энергетический баланс турбоагрегата Т-100-130

Мощность отсеков турбины:

,

где  - мощность каждого отсека турбины, .

Электрическая мощность турбоустановки:

,

где  - механический и электрический КПД турбоустановки соответственно.

Результаты расчёта мощностей отсеков турбины Т – 100 – 130 при tНАР=-5оС приведёны в таблице 3.3.

Таблица №3.3 -Мощности отсеков турбины Т-100-130

Отсек турбины Интервал давлений, МПа Пропуск пара, кг/с Hотсi, кДж/кг Nотсi, МВт
0-1 12,75 3,297 102,2 329 33,6
1-2 3,297 2,11 98,26 93 9,14
2-3 2,11 1,08 92,48 143 13,2
3-4 1,08 0,54 88,85 95 8,44
4-5 0,54 0,315 86,95 89 7,74
5-6 0,315 0,1397 78,81 137 10,8
6-7 0,1397 0,0657 51,6 81 4,18
7-К 0,0657 0,0054 8,84 0 0

Суммарная мощность отсеков турбины:

Электрическая мощность турбоагрегата:

  3.4 Энергетические показатели турбоустановки и теплоцентрали   3.4.1 Турбинная установка

1) Полный расход теплоты на турбоустановку:

,

.

2) Расход теплоты на отопление:

,

.

где ηТ – коэффициент, учитывающий потери теплоты в системе отопления.

3) Расход теплоты на турбинную установку по производству электроэнергии:


,

.

4) Коэффициент полезного действия турбоустановки по производству электроэнергии (без учета собственного расхода электроэнергии):

,

.

5) Удельный расход теплоты на производство электроэнергии:

,

.


Информация о работе «Расчет принципиальной тепловой схемы паротурбинной установки типа Т-100-130»
Раздел: Физика
Количество знаков с пробелами: 55343
Количество таблиц: 7
Количество изображений: 16

Похожие работы

Скачать
43793
4
15

... мощности , МВт, где G0 – расход пара на турбину; Hi – действительный теплоперепад турбины;  – расход пара в конденсатор; - механический КПД, принят ; - КПД электрогенератора, принят ; Относительная ошибка . Расчет произведен верно. 7. Расчет показателей тепловой экономичности блока при работе в третьем расчетном режиме   7.1 Тепловая нагрузка ПГУ    кВт. ...

Скачать
72240
7
17

... ввиду сравнительно небольшого давления на входе (примерно 0,35 МПа).Принципиальная тепловая схема установки показана на рис.1. Рис. 1. Принципиальная тепловая схема турбоустановки с турбиной К-1000-60/1500-1 ПО " Турбоатом " А - питательная вода к ПГ; В - острый пар из ПГ; С - слив конденсата из конденсатора ТППН в основной конденсатор; D - конденсат от эжекторов в основной конденсатор; Е ...

Скачать
74799
32
28

... 4.1. Описание задания. Заменить в тепловой схеме второй (по ходу основного конденсата) подогреватель низкого давления смешивающего типа П7 (рис. 4.1.) на поверхностный и проследить влияние на тепловую экономичность. Рис. 4.1. Первоначальная схема включений ПНД. Эффективность регенеративного подогрева зависит от правильного выбора параметров пара регенеративных отборов, числа регенеративных ...

Скачать
18407
5
11

... турбоустановкой 0.995 -  - температура промперегрева 265.4 оС  - давление в деаэраторе 0.69 МПа  - давление в конденсаторе 0.04 МПа  - тепловая мощность, отдаваемая в теплосеть 22.2 МВт Рис. 1: Тепловая схема ПТУ К-500-65/3000. Рис. 2: Процесс расширения пара в турбине. Таблица параметров и расходов рабочего тела. При заполнении таблицы ...

0 комментариев


Наверх