Введение
Коллекторные двигатели постоянного тока с возбуждением постоянными магнитами мощностью до 200 Вт находят широкое применение в системах электроприводов систем автоматики, робототехники и транспортных средств. Двигатели разрабатываются на напряжение 6 – 110 В и частотой вращения 1500 – 6000 об/мин. Для двигателей постоянного тока рассматриваемого диапазона мощности с диаметром корпуса 20 – 80 мм целесообразно использовать конструкцию с радиально расположенными магнитами. При этом целесообразно применять волновую обмотку якоря, не требующую уравнительных соединений. Число полюсов рекомендуется выбирать в диапазоне 2 р = 2 – 6. Увеличение числа полюсов снижает размеры и массу ярма статора и якоря, но увеличивает магнитные потоки рассеяния и потери в стали из-за увеличения частоты перемагничивания. Пазы якоря выбирают овальной или круглой формы, обеспечивающие постоянную толщину зубца не менее 2 мм.
Применение постоянных магнитов с высокой удельной энергией типа феррит бария позволяет улучшить массогабаритные, энергетические и стоимостные показатели двигателя постоянного тока.
Приведен аналитический расчет коллекторного двигателя постоянного тока с возбуждением от феррит бариевых постоянных магнитов, позволяющий получить заданные технические параметры при лимитированном габарите и заданном тепловом режиме электродвигателя.
1. Основные размеры двигателя
Определение основных размеров двигателя (диаметра якоря D и длины якоря Iδ) является одним из важнейших этапов в ходе расчета двигателя, так как правильно выбранные размеры якоря обеспечивают требуемый тепловой режим, соответствующий выбранному классу нагревостойкости изоляции, и рациональное использование применяемых в машине материалов.
Ток якоря при нагрузке машины
Ток якоря в двигателе с возбуждением постоянными магнитами одновременно является током двигателя
где значение КПД принимаем равным 67%, т.е.
Электромагнитная мощность двигателя
Диаметр якоря
где αδ=0,68
Вδ=0,23 Тл
А/=115*102 А/м
λ=1,1
где - коэффициент полюсного перекрытия, его значение выбирают из диапазона 0,6 – 0,7;
=Bd – магнитная индукция в воздушном зазоре, принимается равной индукции магнита в оптимальной рабочей точке кривой размагничивания предварительно выбранной марки магнита (для феррит бариевых магнитов выбирают из диапазона 0,1–0,22 Тл);
А1 – предварительное значение токовой линейной нагрузки, её значение выбирают в диапазоне (70 – 200) 102 А, м при кратковременном и повторно – кратковременном режимах работы двигателя (большие значения соответствуют большей мощности);
– отношение длины магнитопровода якоря к его диаметру, это значение выбирают из диапазона 0,5 – 1,8.
Полученное значение диаметра якоря округляют до тысячных долей метра и выбирают ближайшее стандартное его значение по приложению А /1/.
По приложению А из стандартного ряда размеров выбираем диаметр якоря D=0,058 м
Расчётная длина якоря
Окружная скорость вращения якоря
Полюсное деление
Расчётная ширина полюса (магнита)
Выбираем конструкцию полюса без полюсного наконечника
Частота перемагничивания стали якоря
2. Обмотка якоря
Обмотка якоря машины постоянного тока является замкнутой. Конструктивно обмотка выполняется барабанной и двухслойной.
Для четырехполюсной конструкции двигателя выбираем простую волновую обмотку с числом параллельных ветвей 2а=2
где 2а - число параллельных ветвей обмотки якоря.
Предварительное общее число эффективных проводников обмотки якоря
принимаем
Число пазов якоря
принимаем
Число коллекторных пластин
принимаем , так как 2 р=4
Предварительное число витков в секции обмотки якоря
принимаем число витков в секции обмотки якоря равным округлённому значению, то есть .
Уточнённое число проводников обмотки якоря
Число проводников обмотки якоря в пазу якоря
Уточнённое значение токовой линейной нагрузки
при этом должно выполняться условие
Условие выполняется.
Шаги обмотки якоря
Для простой волновой обмотки якоря:
а) первый частичный шаг
б) результирующий шаг
в) второй частичный шаг
г) шаг обмотки по пазам
Обмоточные шаги у1, у2, у, уп должны быть целыми числам. Укорочение шага εк и ε (εк>0; ε>0) выбирают таким, чтобы шаги обмотки были целыми числами. Применение укорочения шага (εк>0) в петлевых обмотках приводит к уменьшению длины и вылета лобовых частей, к уменьшению сопротивления и массы обмотки якоря.
... ; которая должна быть близкой к принятому ранее значению. Площадь окна необходимую для размещения обмотки возбуждения рассчитывают так же как и для машин с последовательным возбуждением.ПОТЕРИ И КПД МАШИНЫ ПОСТОЯННОГО ТОКА В МПТ различают следующие виды потерь: потери в обмотках якоря и возбуждения потери в щётках; потери в стали ...
стоянного тока мощностью 400 Вт для бытовой техники. 2.2 Цель выполнения КР и назначение изделия Цель выполнения - создание электродвигателя для бытовой техники. Применение электродвигателя повышает КПД привода, уменьшает металлоемкость и трудоемкость при изготовлении. 2.3 Технические требования 2.3.1Требования по назначению Режим работы продолжительный по ГОСТ 2582-81. Основные ...
... импульсов tu при неизменном среднем моменте на валу двигателя. В зависимости от соотношения электромагнитной постоянной времени обмотки якоря tя и величины Тu, от схемы управления, момента нагрузки и тока в цепи якоря возможны два основных режима работы двигателя при импульсном управлении: режим прерывистого тока и режим непрерывного тока. Режим прерывистого тока возможен при tя< Тu и ...
... обмотки а) шаг по коллектору и результирующий шаг б) первый частичный шаг в) второй частичный шаг У = Ук – У1 У = 28,5 – 13,75 = 14,75 на (рис.1) отображена схема обмотки якоря проектируемого двигателя постоянного тока 2.5 Определяем размеры магнитной цепи. 47. Предварительное значение внутреннего диаметра якоря и диаметр вала м 48. Высота стенки якоря [1, ...
0 комментариев