3. Расчет защитного заземления
При расчете карьерной сети заземления определяют основные параметры заземлителей и заземляющих проводов.
Сопротивление защитного заземления
где - допустимое напряжение прикосновения,
- коэффициент прикосновения,
- наибольший возможный ток утечки на землю, А
-общая длина КЛ,
- общая длина ВЛ,
Общее сопротивление сети заземления
где - сопротивление магистрального провода
- сопротивление заземляющей жилы гибкого кабеля бурового станка
Центральный заземляющий контур выполняется из стальных труб диаметром 5,8 см и длиной 300см, соединенных общим стальным прутом диаметром 1см и длиной 3000см. Трубы и соединительный прут заглублены на расстояние 50см от поверхности земли
Сопротивление одного трубчатого электрода
где t – расстояние от поверхности земли до середины трубчатого заземлителя
Необходимое число трубчатых электродов заземляющего контура
Сопротивление растеканию соединительного стального прута
Общее сопротивление заземляющего контура
, -коэффициенты использования труб и соединительного прута.
Общее сопротивление заземления наиболее удаленной установки напряжением 400 В
что удовлетворяет нормам Правил безопасности
3. Тема задания
КОНТРОЛЬ ЗА ИСПРАВНОСТЬЮ ИЗОЛЯЦИИ ЭЛЕКТРОУСТАНОВОК КАРЬЕРА
Состояние изоляции электроустановок должно соответствовать нормам действующих правил и стандартов.
Контроль за состоянием изоляции производится: измерением сопротивления изоляции мегомметром и с помощью специальных приборов постоянного контроля изоляции.
Измерение сопротивления изоляцииВсе электрические установки могут быть включены под напряжение лишь после их осмотра и измерения сопротивления изоляции относительно земли и между фазами. Проверяется изоляция периодически, так как с течением времени она приходит в негодность. В нормальных производственных помещениях на поверхности карьера проверка изоляции электроустановок производится не менее одного раза в год, а проверка изоляции электроустановок, работающих в карьере, если там отсутствует постоянный контроль за ее состоянием, — ежемесячно.
Сопротивление изоляции установок с рабочим напряжением 3—6 кВ измеряется мегомметрами МС-05 или МС-06, М-4100/5, максимальное развиваемое напряжение которых равно 2500 В. Сопротивление изоляции установок с рабочим напряжением 1000 В измеряется мегомметрами М-1101 или М-1102 с рабочим напряжением 500—1000 В.
Постоянный контроль за исправностью изоляции
Этот вид контроля применяют преимущественно в сетях с изолированной нейтралью. Необходимость постоянного контроля обусловливается возможностью повреждения изоляции установок в период между двумя очередными проверками.
Наиболее простым способом постоянного контроля за исправностью изоляции в сетях 380 В является способ вольтметров, включенных по схеме (рис. 4). Между нулевой точкой вольтметров и землей включается реле напряжения.
В ЗРУ-6 кВ ГПП и на ЦРП (РП) 6 кВ на каждой секции устанавливается КРУ (КСО) с трансформатором напряжения НТМИ-6, ко вторичным обмоткам которого присоединяют три вольтметра (или один вольтметр с вольтметровым переключателем) и реле напряжения. Замыкающие контакты реле включены в цепь 220 В сигнальных устройств (рис. 5).
Если изоляция всех фаз относительно земли имеет одинаковое сопротивление, то каждый из вольтметров показывает фазное напряжение. Если сопротивление изоляции одной из фаз по отношению к земле резко уменьшается или равно нулю (пробой), вольтметр, подключенный к этой фазе, даст пониженное или нулевое показание, два других вольтметра покажут линейное напряжение. Реле напряжения сработает и своими контактами включит сигнальные лампы и гудок (звонок). Лампы и вольтметры включаются в цепь контроля за исправностью изоляции и должны иметь большое сопротивление, чтобы при их подключении между проводами и землей не ухудшалась изоляция.
Эти системы контроля можно применять только тогда, когда на подстанциях постоянно присутствует обслуживающий персонал, который сможет отключить установку при резком снижении сопротивления изоляции или полном замыкании сети на землю.
В сетях напряжением 380—660 В открытых горных работ для защиты от однофазных замыканий на землю применяют реле контроля изоляции РКЗ-Н51 и устройства автоматического контроля изоляции УАКИ.
Рис. 5. Схема постоянного контроля за состоянием изоляции в сетях 6 кВ
Реле контроля изоляции РКЗ-Н51 (рис. 6, а) позволяет эксплуатировать сети с постоянным сопротивлением изоляции и обнаруживать нарушение ее
На отдельных участках. Оно состоит из двух частей: выпрямительного моста, подключенного к трем фазам сети через ограничивающие сопротивления R3, R5 и R7, и фильтра напряжения нулевой последовательности, собранного из сопротивлений R3—R8, соединенных в звезду. Ток в катушке реле КА равен сумме токов, протекающих через трехфазный выпрямительный мост и фильтр напряжения нулевой последовательности с вентилем VD4. Трехфазный выпрямительный мост реагирует на общее снижение сопротивления изоляции сети.
Фильтр напряжения нулевой последовательности реагирует на несимметричное снижение сопротивления изоляции. Реле срабатывает от суммарного тока обеих частей схемы при снижении общего сопротивления изоляции ниже критического значения (для сети U=380B, Rкр=1350 Ом). Время срабатывания реле равно 30 мс. Нажатием кнопки SB осуществляется периодический контроль исправности реле.
УАКИ — устройство автоматического контроля изоляции, выпускаемое для установки в сетях 380 и 660 В угольных шахт и карьеров, имеет в основе вентильную схему (рис. 6, б). Фильтр напряжения нулевой последовательности состоит из трех активных сопротивлений (R3, R4, R5)
Рис.6. Устройства защитного отключения в сетях напряжением до 1000 В:
а)-схема реле контроля изоляции РКЗ-Н51;б)-схема устройства автоматического контроля изоляции УАКИ и второй обмотки КА1.11 двухобмоточного реле КА. Магнитные потоки обмоток KA1.1и KA1.11 направлены встречно.
При прикосновении человека к голой токоведущей части электроустановки, находящейся под напряжением, или появлении в сети опасной утечки на землю увеличивается разность магнитных потоков обмоток KA1.1 и KA1.11, в результате чего реле срабатывает. Замыканием кнопки SB проверяется исправность реле. Дроссель L предназначен для компенсации емкости в сети.
... (от передвижения источников загрязнения) 1180,48 Всего за год: 211845,25 10. Совершенствование системы электроснабжения подземных потребителей шахты Расчет схемы электроснабжения ЦПП до участка и выбор фазокомпенсирующих устройств Основными задачами эксплуатации современных систем электроснабжения горных предприятий являются правильное определение электриче ...
... промышленной санитарии труда, техники безопасности и пожарной безопасности. Разработка мероприятий, которые обеспечивают охрану труда, в соответствии с законодательством Украины об охране труда. Слипчитское месторождение габро-норита находится в 1,8 км от посёлка Слипчицы. На предприятии работает 36 человек. В соответствии с законом Украины об охране труда (статья 23), функции службы охраны ...
... 25-30 % объёма воды, закачиваемой в метегероичерский водоносный горизонт, возвращается обратно в карьер. Проблема осушения карьера «Мир» стала серьёзным препятствием выполнения реконструкции в намеченные сроки. 4.3. Схема управления инвестиционно – строительным сектором экономики в городе Мирный. В связи с особенностями города Мирный, инвестиционно – строительный сектор в нём представлен ...
... валютных курсов, в четыре раза превышает ВВП Китая. Она достигла высокого уровня технического совершенства, особенно в отдельных направлениях передовых технологий. Нынешние позиции Японии в Мировом хозяйстве — результат ее экономического развития во второй половине текущего столетия. В 1938г. на ее долю приходилось всего 3% ВМП. 2.1. послевоенные экономические реформы. По окончании войны ...
0 комментариев