1. Сила связи. Этот параметр характеризует, насколько слабо или сильно взаимодействие;
2. Расстройка по частоте. Расстройка частот Δf=f1– f2 характеризует, насколько различны осцилляторы. Представим себе следующий эксперимент. Пусть собственные частоты двух невзаимодействующих осцилляторов f1 и f2. Свяжем осцилляторы и измерим частоты F1 и F2 связанных систем. Мы можем выполнить такие измерения для различных параметров расстройки и получить зависимость ΔF=F1–F2 от Δf [1] (pис. 2).
Эта зависимость типична для взаимодействующих автоколебательных систем, независимо от их природы (механической, химической, электронной, и т. д.). Анализ показывает, что, если рассогласованность автономных систем не слишком велика, то частоты двух систем становятся равными, или захваченными, т. е. наступает синхронизация. В общем случае ширина области синхронизации возрастает с увеличением силы связи [3].
Рис. 2. График «разность наблюдаемых частот - расстройка» для некоторой фиксированной силы связи. Разность частот ΔF двух связанных осцилляторов изображена как функция расстройки Δf несвязанных систем. В определенном диапазоне расстроек частоты связанных осцилляторов идентичны (ΔF=0), что указывает на синхронизацию.
Более детальное рассмотрение синхронных состояний показывает, что синхронизация двух автоколебательных систем может возникнуть в двух формах. Чтобы описать эти режимы, введем ключевое понятие теории синхронизации, а именно понятие фазы осциллятора [1]. Фаза понимается как величина, пропорциональная доле периода и возрастающая на 2π в течение одного цикла колебаний. Фаза однозначно определяет положение периодического осциллятора. Как и время, она параметризует сигнал внутри одного цикла.
φ(t) = φo + 2π (2)
Рассмотрим разность фаз двух автоколебательных систем. Если в результате синхронизации разность фаз φ1–φ2 близка к нулю, то такой режим называется синфазной синхронизацией. Если взглянуть на колебания осцилляторов с большой точностью, то можно выявить, что эти колебания не в точности совпадают, так что обычно говорят о фазовом сдвиге между двумя колебаниями. Этот фазовый сдвиг может быть очень мал, но он всегда присутствует, если две системы изначально имели разные периоды, или же разные частоты.
Если разность фаз синхронизованных осцилляторов близка к π, то говорят о синхронизации в противофазе.
Возникновение определенного соотношения между фазами двух синхронизованных автоколебательных систем часто называют захват фаз. Т. о. можно сформулировать основной признак синхронизации: будучи связанными, два осциллятора с изначально различными частотами и независимыми фазами подстраивают свои ритмы и начинают осциллировать на общей частоте [3]. Это также предполагает наличие определенного соотношения между фазами двух систем. Так, говорят, что фазы φ1 и φ2 захвачены в отношении n : m, если выполняется неравенство:
|nφ1 – mφ2| < constant (3)
Подводя итоги, можно сказать, что если в каком-либо эксперименте мы наблюдаем две переменные, которые кажутся изменяющимися синхронно, то это не обязательно означает, что мы наблюдаем синхронизацию. Чтобы назвать явление синхронизацией, мы должны быть уверены в том, что:
· мы анализируем поведение автоколебательных систем,
т.е. систем, способных генерировать собственные ритмы;
· системы подстраивают свои ритмы за счет слабого взаимодействия;
· подстройка ритмов происходит в некотором диапазоне расстроек между системами; в частности, если частота одного из
осцилляторов медленно изменяется, то вторая система следует
за этим изменением.
Соответственно, одного наблюдения недостаточно, чтобы сделать вывод о наличии синхронизации. Синхронизация — это сложный динамический процесс, а не состояние [1].
7. Синхронизация: обзор различных случаевПеречислим различные формы синхронизации без учета природы колебаний (т.е. генерируются ли они электронным устройством или живой клеткой) и природы связи (т.е. осуществляется ли она за счет механического соединения или диффузии реагентов химической реакции), т.е. остановимся на общих свойствах: являются ли колебания периодическими или нерегулярными; является ли связь взаимной или однонаправленной и т.д.Это не будет полной и строгой классификацией, а просто кратким обсуждением основных проблем теории синхронизации.
7. 1. Синхронизация внешней силойСинхронизация была открыта Гюйгенсом как побочный результат его усилий по созданию высокоточных часов. В наши дни этот эффект используется для точного и недорогого измерения времени с помощью радиоуправляемых часов. В этом случае передаваемый по радио слабый сигнал от центральных высокоточных часов ежеминутно подстраивает ритм других часов, тем самым захватывая.
Похожая схема синхронизации была «реализована» природой для подстройки биологических часов, которые регулируют суточные (циркадные) и сезонные ритмы живых систем, от бактерии до человека.
7. 2. Ансамбли осцилляторов и колебательные средыВо многих естественных ситуациях взаимодействуют более двух объектов. Если два осциллятора способны к подстройке ритмов, то можно ожидать такой способности и от большого числа осцилляторов. Такая система называется ансамблем взаимно связанных осцилляторов. При этом можно говорить о глобальной (каждый с каждым) связи. Бывают и другие ситуации, когда осцилляторы упорядочены в цепочки или решетки, где каждый элемент взаимодействует с несколькими соседями. Такие структуры типичны для созданных человеком систем, например, для решеток лазеров, но могут также встречаться и в природе. Эксперименты показывают, что соседние осцилляторы в цепочке часто подстраивают свои частоты и формируют синхронные кластеры.
Достаточно часто мы не можем выделить отдельный колебательный элемент внутри естественного объекта. Вместо этого мы должны рассматривать систему как непрерывную колебательную среду, где также возможна синхронизация.
7. 3. Фазовая и полная синхронизация хаотических осцилляторовВ наши дни широко известно, что автоколебательные системы, например нелинейные электронные цепи, могут генерировать довольно сложные, хаотические сигналы. Многие естественные системы также демонстрируют сложное поведение. Недавние исследования показывают, что при наличии связи такие системы также могут синхронизоваться. Конечно же, в этом случае нам необходимо уточнить понятие синхронизации, потому что совершенно не очевидно, как характеризовать ритм хаотического осциллятора. Иногда хаотические сигналы относительно просты, как, например, показанный на рисунке 3. Такой сигнал — «почти периодический». Можно считать, что он состоит из похожих циклов с изменяющейся амплитудой и периодом (который может быть грубо определен как интервал между соседними максимумами). Выбрав большой интервал времени τ, мы можем сосчитать число циклов в этом интервале Nτ, вычислить среднюю частоту
(4)
и взять ее в качестве характеристики хаотического колебательного процесса [4].
Рис.3. Пример хаотических колебаний.
С помощью средних частот мы можем описать коллективное поведение взаимодействующих хаотических систем точно так же, как и периодических. Если связь достаточно велика (например, для резистивно связанных электрических цепей это означает, что сопротивление должно быть достаточно мало), средние частоты двух осцилляторов становятся равными. Важно отметить, что совпадение средних частот не означает, что сигналы также совпадают. Оказывается, что слабая связь не оказывает влияния на хаотическую природу обоих осцилляторов, их амплитуды остаются нерегулярными и некоррелированными, в то время как частоты подстраиваются таким образом, что мы можем говорить о фазовом сдвиге между сигналами. Такой режим называется фазовой синхронизацией хаотических систем.
Очень сильная связь стремится сделать состояния обоих осцилляторов идентичными. Она влияет не только на средние частоты, но также и на хаотические амплитуды. В результате, сигналы совпадают (или почти совпадают) и наступает режим полной синхронизации.
Явление синхронизации может также наблюдаться в больших ансамблях взаимно связанных хаотических систем и в сформированных ими пространственных структурах [1].
8. Цепочки осцилляторов 8. 1. Синхронизация N связанных осцилляторовРассмотрим синхронизацию N связанных осцилляторов на примере электронных генераторов, связанных через емкость, индуктивность и сопротивление. Уравнения колебаний в такой системе имеют вид:
(i=1,2,...,N). (5)
Здесь xi – напряжения на входах усилителей, ωi – собственные частоты колебательных контуров, μi – превышения над порогом генерации, βij(1) – коэффициенты индуктивной связи, βij(2) – коэффициенты емкостной связи, βij(3) – коэффициенты связи через сопротивление, (1 – γixi2) – функции, характеризующие нелинейные свойства усилителей.
Будем считать, что частоты автономных генераторов близки друг к другу, тогда решение уравнения (5) можно искать в виде:
xi=Аicos(ωt+φi), = – Аiωsin(ωt+φi), (6)
где ω=(1/N).
Для амплитуд и фаз получаем следующие уравнения:
(7)
(8)
где Ai0 – амплитуда колебаний i-го генератора в отсутствии связи, Φij=φi – φj, (9)
Δi=ωi – ω, (10)
mij=[(βij(1)ω2 – βij(3))2 + βij(2)2]1/2, (11)
(12)
Рассмотрим случай слабой связи между генераторами, когда в уравнениях для фаз (8) можно положить Ai=Ai0. В синхронном режиме, когда , получим следующую систему уравнений для определения стационарных разностей фаз:
(13)
где i=1,2,...,N – 1, Δi,i+1=ωi – ωi+1=Δi – Δi+1.
Система уравнений (13) аналитически может быть решена лишь для частного случая полностью идентичных генераторов, когда Ai0=A0, mij=m, χij=χ, ωi=ω для всех i и j. В этом случае уравнения (13) примут вид:
(i=1,...,N – 1). (15)
Уравнение (15) имеет два частных решения:
Φij= 0, (16)
Φij= ± (j – i) (17)
Частота синхронных колебаний в случае синфазного режима работы генераторов равна ωс = ω + (N – 1)mcosχ, а во втором случае ωс = ω – mcosχ [3].
8. 2. Пример: цепочка лазеровСинхронизация в цепочке лазеров часто используется для получения излучения большой интенсивности. Этого можно достигнуть, расположив лазеры в линию, так, что каждый взаимодействует с ближайшими соседями или со всеми другими лазерами. Добиться взаимодействия каждого лазера с остальными можно с помощью специального пространственного фильтра. При такой конфигурации каждый лазер взаимодействует с остальными, но сила связи зависит от расстояния между лазерами. Результаты, представленные на рисунке 4, четко указывают на синхронизацию. Действительно, если бы лазеры были не синхронизованы, то излучение в дальней зоне представляло бы собой сумму некогерентных колебаний, и потому было бы пространственно однородным. Неоднородность распределения на рисунке 4 появляется из-за захвата фаз, это типичная интерференционная картина.
Рис. 4. Интенсивность излучения в дальней зоне при слабой связи лазеров.
9. Образование кластеров 9. 1. Кластеры в дискретной цепочке осцилляторов
Если в дискретной цепочке осцилляторы взаимодействуют очень слабо, то синхронизации не будет, и каждая система будет колебаться со своей частотой. При достаточно сильной связи будет наблюдаться синхронизация всей цепочки. В промежуточном случае можно ожидать появление частично синхронизированных режимов, с несколькими различными частотами. Поскольку связь стремится синхронизировать ближайших соседей, образуются кластеры синхронизированных осцилляторов [1].
Рис. 5. Зависимость наблюдаемых частот Ωkот параметра связи ε в цепочке из пяти осцилляторов. Собственные частоты равны -1.8, -1.1, 0.1, 0.9, 1.9, функция связи выбрана в виде q(x)=sinx. С увеличением связи сначала осцилляторы 1 и 2 образуют кластер при ε≈0.4. Затем при ε≈0.6 появляется кластер из осцилляторов 4 и 5. При ε≈1.4 к нему присоединяется осциллятор 3. Наконец, при ε≈3 все осцилляторы синхронизируются.
9. 1. Кластеры в непрерывной колебательной средеОбразование кластеров в непрерывной колебательной среде является результатом двух противоположных факторов: неоднородности распределения собственных частот и связи, которая старается уравнять состояния систем. Такая связь часто возникает вследствие диффузии, и поэтому называется диффузионной. Рассмотрим, что происходит на границе двух кластеров, имеющих разные частоты. Здесь важно различать случал дискретной цепочки и непрерывной среды.
В дискретной цепочке граница между двумя кластерами есть граница между двумя осцилляторами, имеющими разные частоты. Это просто означает, что они не захвачены: каждый колеблется со своей частотой. В отличие от этого, если в сплошной среде два осциллятора в двух пространственных точках имеют разные частоты, то между ними должен быть непрерывный переход. На первый взгляд, можно просто провести непрерывный профиль частот, соединяющий эти точки. Более детальное рассмотрение показывает, что это невозможно. Действительно, разные частоты отвечают разным скоростям вращения фазы. Поэтому разность фаз между точками, принадлежащими к двум кластерам, растет во времени со скоростью, пропорциональной разности частот. Следовательно, профиль фазы становится все более наклонным. С другой стороны, непрерывный крутой профиль фазы означает, что в среде образуются волновые структуры с все меньшей и меньшей длиной волны. Рост разности фаз между кластерами приводит к укорочению длины волны со временем. Ясно, что этот процесс долго продолжаться не может — и действительно, среда находит выход из этой ситуации. Увеличивающийся градиент фазы уменьшается за счет пространственно-временного дефекта. Дефект образуется, когда амплитуда колебаний обращается в ноль, он позволяет сохранить градиент фазы конечным.
Чтобы продемонстрировать, как возникает пространственно-временной дефект, предположим, что разность фаз между точками 1 и 2, принадлежащими разным кластерам, достигла значения ≈2π. Если бы между 1 и 2 не было среды, то мы бы просто считали состояния в этих точках почти идентичными. В среде, однако, существует непрерывный профиль фазы между этими точками. Представляя как амплитуду, так и фазу в полярных координатах, мы можем изобразить поле окружностью. (рис. 6).
Рис. 6. Иллюстрация пространственно-временного дефекта. Начальный профиль фазы и амплитуды между точками 1 и 2 показан жирной сплошной линией. С течением времени амплитуда уменьшается и профиль меняется, как показано стрелками. В конечном состоянии (пунктирная линия) разность фаз между точками 1 и 2 близка к нулю.
Рассмотрим теперь влияние связи в среде на профиль амплитуды и фазы. Типичная связь — диффузионная, или, по крайней мере, имеет диффузионную компоненту; она стремится уменьшить разность между состояниями ближайших соседей, т.е. уменьшить разность между состояниями в точках 1 и 2. Единственная возможность добиться этого — это уменьшить амплитуду колебаний. Из рисунка 6 видно, что такое уменьшение амплитуды действительно превращает профиль фазы между 1 и 2 из окружности в почти точку. В конечном состоянии фазы в точках 1 и 2 почти равны, хотя изначально они различались на 2π [1]. После амплитуда снова нарастает, и процесс повторяется, т. е. наблюдаются биения.
10. ЗаключениеАнализ научной литературы показал, что явление синхронизации широко распространено в обществе, природе и технике. Мы понимаем синхронизацию как подстройку ритмов осциллирующих объектов за счет слабого взаимодействия между ними. Синхронизация зависит от двух факторов: сила связи и расстройка по частоте. Существует два режима взаимной синхронизации двух автоколебательных систем: синфазная синхронизация и в противофазе. В обоих случаях разность фаз не в точности ноль (не в точности 2π), так что говорят о фазовом сдвиге между двумя колебаниями. Взаимная синхронизация может возникнуть как в системе нескольких взаимодействующих автоколебательных систем, так и в ансамбле глобально связанных осцилляторов, дискретных цепочках или решетках, а также в непрерывных колебательных средах. При определенной силе связи возможно образование кластеров синхронизированных осцилляторов. Достаточно распространены автоколебательные системы, генерирующие хаотические сигналы, где также возможна синхронизация.
1. Пиковский А. А. Синхронизация. Фундаментальное нелинейное явление. М.:2003, 496 с.
2. Анищенко В. С. Знакомство с нелинейной динамикой: Лекции соросовского профессора: Учеб. пособие. М.:2002, 144с.
3. Ланда П. С. Автоколебания в системах с конечным числом степеней свободы. М.:1980, 356 с.
4. Романовский Ю. М. Процессы самоорганизации в физике, химии и биологии. М.:1981, 48с.
5. Данилов Ю. А. Роль и место синергетики в современной науке. www.synergetic.ru/science/index.php?article=dan2#up
6. Фрадков А. Л. Кибернетическая физика: принципы и примеры. www.ipme.ru/ipme/labs/ccs/alf/f03.pdf
7. Львова Л. В. Ритмы жизни. www.provisor.com.ua/archive/2003/N1/art_34.htm
... полюсов. Самоорганизация эти поля сохраняет. Из таких колебательных систем сами, как мозаика из магнитов, складываются “классические” самоорганизующиеся модели микромира. Не будем утверждать, что здесь изложены единственно правильные варианты решений "принципиально неразрешимых" задач классической физики. Важно было показать, что такие решения есть - вопреки самым авторитетным уверениям всей ...
... мере, синергетическим стилем мышления может быть некой платформой для открытого творческого диалога между учеными, мыслителями, деятелями искусства, имеющими различные творческие установки и взгляды на мир. 2. Некоторые парадоксальные следствия синергетики Множество новых парадоксальных идей, образов и представлений возникает в синергетике. Кроме того, с точки зрения синергетики может быть ...
... экспериментальной проверке. Тем не менее, такой подход вполне правомерен. Он может служить иллюстрацией высказанного выше положения о том, что идеи синергетики намечают и новые подходы к изучению деятельности мозга. В пользу правомерности именно такого подхода может свидетельствовать и другой интересный феномен, получивший название «диссоциированного обучения». Суть этого феномена состоит в том, ...
... ритмомелодических характеристик текста на восприятие его смысла и возникновение определенного эмоционального состояния. Выявлен существенно сходный характер воздействия ритмомелодической структуры вербального и музыкального текстов на эмоциональную сферу воспринимающих (при восприятии текстов разных знаковых систем испытуемые фиксируют эмоции одинаковой модальности). Чрезвычайно важно, что ...
0 комментариев