Московский Государственный Строительный Университет

Кафедра Физики

КУРСОВАЯ РАБОТА

по физике на тему

Теплопроводность. Теплопроводность жидкостей и газов

Москва 2008 г.


Содержание

Введение

1. Основной закон теплопроводности

2. Физический смысл коэффициента теплопроводности

3. Теплопроводность жидкостей и газов

4. Теплопроводность газов

5. Теплопроводность жидкости

Заключение

Список используемых источников


Введение

 

В учении о теплообмене рассматриваются процессы распространения теплоты в твердых, жидких и газообразных телах. Эти процессы по своей физико-механической природе весьма многообразны, отличаются большой сложностью и обычно развиваются в виде целого комплекса разнородных явлений.

Перенос теплоты может осуществляться тремя способами: теплопроводностью, конвекцией и излучением, или радиацией. Эти формы глубоко различны по своей природе и характеризуются различными законами.

Процесс переноса теплоты теплопроводностью происходит между непосредственно соприкасающимися телами или частицами тел с различной температурой. Учение о теплопроводности однородных и изотропных тел опирается на весьма прочный теоретический фундамент. Оно основано на простых количественных законах и располагает хорошо разработанным математическим аппаратом. Теплопроводность представляет собой, согласно взглядам современной физики, молекулярный процесс передачи теплоты.

Известно, что при нагревании тела кинетическая энергия его молекул возрастает. Частицы более нагретой части тела, сталкиваясь при своем беспорядочном движении с соседними частицами, сообщают им часть своей кинетической энергии. Этот процесс постепенно распространяется по всему телу. Перенос теплоты теплопроводностью зависит от физических свойств тела, от его геометрических размерах, а также от разности температур между различными частями тела. При определении переноса теплоты теплопроводностью в реальных телах встречаются известные трудности, которые на практике до сих пор удовлетворительно не решены. Эти трудности состоят в том, что тепловые процессы развиваются в неоднородной среде, свойства которой зависят от температуры и изменяются по объему.


1. Основной закон теплопроводности

 

Для распространения теплоты в любом теле или пространстве необходимо наличие разности температур в различных точках тела. Это условие относится и к передаче теплоты теплопроводностью, при которой градиент температуры в различных точках тела не должен быть равен нулю.

Связь между количеством теплоты , проходящим за промежуток времени  через элементарную площадку dS, расположенную на изотермической поверхности, и градиентом температуры устанавливается гипотезой Фурье, согласно которой

.(2.1)

Минус в правой части показывает, что в направлении теплового потока температура убывает и grad T является величиной отрицательной. Коэффициент пропорциональности  называется коэффициентом теплопроводности или более кратко теплопроводностью. Справедливость гипотезы Фурье подтверждено многочисленными опытными данными, поэтому эта гипотеза в настоящее время носит название основного уравнения теплопроводности или закона Фурье.

Отношение количества теплоты, проходящего через заданную поверхность, ко времени называют тепловым потоком. Тепловой поток обозначают q и выражают в ваттах (Вт):

. (2.2)

Если относительное изменение температуры Т на расстоянии средней длины свободного пробега частиц l мало, то выполняется основной закон теплопроводности (закон Фурье): плотность теплового потока q пропорциональна градиенту температуры grad T, то есть

 (2.3)

 (где  — коэффициент теплопроводности или просто теплопроводности) Отношение теплового потока dq через малый элемент поверхности к площади dS этой поверхности называют поверхностной плотностью теплового потока (или вектором плотности теплового потока), обозначают j и выражают в ваттах на квадратный метр (Вт/м2):

.(2.4)

Вектор плотности теплового потока направлен по нормали к поверхности в сторону убывания температуры. Векторы j и grad T лежат на одной прямой, но направлены в противоположные стороны.

Тепловой поток q, прошедший сквозь произвольную поверхность S, находят из выражения

.(2.5)

Количество теплоты, прошедшее через эту поверхность в течение времени t, определяется интегралом

.(2.6)

Таким образом, для определения количества теплоты, проходящего через какую-либо произвольную поверхность твердого тела, необходимо знать температурное поле внутри рассматриваемого тела. Нахождение температурного поля и составляет основную задачу аналитической теории теплопроводности.


Информация о работе «Теплопроводность жидкостей и газов»
Раздел: Физика
Количество знаков с пробелами: 19987
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
47310
0
0

... состояние равновесия – на поверхность тела действует сила давления жидкости, которая уравновешивает вес жидкости внутри поверхности. Движение жидкостей и газов. Движение жидкостей и газов, как и все другие виды движения, рассматриваемые в механике, можно полностью охарактеризовать, оперируя единицами измерения длины, времени и силы. Так, диаметр парашюта можно измерять в метрах, время ...

Скачать
22046
0
2

... тепла проходит вследствие теплопроводности в единицу времени через единицу поверхности теплообмена при падении температуры на 1 град на единицу длины нормали к изотермической поверхности. Коэффициенты теплопроводности l сплошных однородных сред зависят от физико-химических свойств вещества (структура вещества, его природа). Значения теплопроводности для многих веществ табулированы и могут быть ...

Скачать
22887
1
0

... совершают колебания с большей амплитудой, и при столкновениях с другими частицами как бы раскачивают их, передавая им энергию. Такой механизм передачи энергии не обеспечивает ее быстрого переноса. Поэтому теплопроводность жидкостей очень мала. Вязкость. Вязкость - сопротивление, оказываемое телом движению отдельной его части без нарушения связи целого. Такое движение составляет характеристику ...

Скачать
11515
0
1

... . Это дает возможность сравнить со средней длинной свободного пробега, а - со средней скоростью молекул. Тогда по аналогии с идеальными газами коэффициент диффузии (точнее самодиффузии) жидкости равен: . Коэффициент самодиффузии сильно зависит от температуры, т.е. с повышением температуры он увеличивается. Выражение коэффициента диффузии можно переписать в виде , где , причем n - частота ...

0 комментариев


Наверх