6.7. Сферическим уравнением Лапласа назовём дифференциальное уравнение в частных производных второго порядка

.(6.19)

В сферических переменных оно приобретает вид

, (6.20)

Решения отыщем по методу Фурье. Для разделения переменных искомое решение представим как произведение радиальной и угловой функций.

Общее правило: Если в дифференциальном уравнении в частных производных можно выделить оператор, включающий несколько переменных, и привести его к аддитивной форме, придавая ему вид суммы слагаемых, определённых лишь для отдельных переменных, то исходное дифференциальное уравнение распадается на систему дифференциальных уравнений. Каждое из них и их решения определены лишь на переменных соответствующего оператора-слагаемого. Частные решения исходного дифференциального уравнения выбираются в мультипликативном виде, как произведения функций – решений отдельных уравнений системы. Этот результат сформулируем в виде краткого правила: «Оператор аддитивен-Решения мультипликативны». Этот подход встречается всюду в теории многоэлектронных систем – атомов и молекул.

6.7.1. Радиальную часть общего решения сферического уравнения Лапласа выбирают в простейшем виде степенной функции от радиальной переменной, Показатель степени l полагают целочисленным неотрицательным числом . Только в этом случае соблюдается симметрия общего решения по отношению ко взаимным перестановкам декартовых координат, и делается возможно построение регулярных решений (функций класса Q ), (конечных, однозначных и непрерывных), (далее нормированных).

. (6.21)

Угловые сомножители общего решения Y(J,j) называются сферическими гармониками (шаровыми функциями). Запишем уравнение Лапласа, и рассмотрим процедуру разделения переменных:

. (6.22)

Подставим радиальный оператор и совершим следующие простейшие преобразования:

.

Перенесём одно из слагаемых в сторону от знака равенства и разделим обе части на Y(J,j):

.

6.7.2. Итоговое дифференциальное уравнение называется уравнением Лежандра.

Оно включает лишь угловую часть лапласиана и имеет вид:

. (6.23)

Уравнение Лежандра, встречается в нескольких фундаментальных задачах: 1) в задаче о квантовых состояниях и энергетических уровнях ротатора - линейной молекулы, свободно вращающейся вокруг центра массы. 2) в уравнении Шрёдингера для атома H и водородоподобных ионов.

6.7.3. Уравнение Лежандра это вполне типичное операторное уравнение на собственные функции и собственные значения. С точностью до постоянного множителя уравнение Лежандра идентично операторному уравнению на собственные значения для оператора квадрата момента импульса. Напомним вид самого оператора момента импульса:

Перенесём постоянный множитель влево, получим

  (6.24)

6.7.4. Преобразуя оператор слева от знака равенства к шаровым переменным, получаем не что иное, как оператор Лежандра, т.е.:

 . (6.25)

На этом основании решения уравнения Лежандра являются решениями также и операторного уравнения на собственные значения квадрата момента импульса. Отсюда строго получается формула для квантования модуля и проекции момента импульса. Это означает

. (6.26)

6.7.5. Квадрат модуля момента импульса определяется собственными значениями оператора Лежандра. Допустимые значения модуля момента импульса свободно вращающейся вокруг центра масс квантовой системы (жесткого ротатора) следуют из операторного уравнения (6.25):

. (6.27)

Соответственно при пространственном вращении возможные дискретные значения модуля момента импульса и его проекций на ось вращения определяется двумя формулами

  (6.28)

6.8. Ротатор. Вращательные состояния ротатора . Углы прецессии момента импульса. Энергетические уровни ротатора непосредственно связаны с квадратом момента.

.(6.29)

Кратность вырождения уровня называется его статистическим весом и определяется как число

возможных состояний с одним и тем же моментом, т.е. равно числу возможных проекций. Статистические веса уровней ротатора gl равны:

. (6.30)

Эти формулы необходимы для вычисления термодинамических свойств газов.


Информация о работе «Уравнение Шрёдингера для простейших стационарных движений»
Раздел: Физика
Количество знаков с пробелами: 15917
Количество таблиц: 4
Количество изображений: 8

Похожие работы

Скачать
15217
0
2

... ;; он-то и представляет собой численное значение искомой физической величины. Резюме. Выражения 4.3 и 4.4 настолько важны, что без них было бы затруднительно построить математический аппарат квантовой механики.   4.2. О структуре операторного уравнения Способ расчёта динамических переменных из волновой функции оказывается настолько общей, что затрагивает самые важные вопросы о способах ...

Скачать
40869
0
4

... при наличии сил, действующих на частицу, вместо Е в уравнение (16) нужно ввести кинетическую энергию частицы Т = Е –U. Произведя такую замену, мы придем к уравнению (12). Приведенные нами рассуждения не могут рассматриваться как вывод уравнения Шрёдингера. Их цель — пояснить, каким образом можно было прийти к установлению вида волнового уравнения для микрочастицы. Доказательством же правильности ...

Скачать
17071
3
3

... числу l. Энергетические уровни АО многоэлектронного атома (правило Клечковского-Маделунга): “Уровни АО многоэлектронного атома возрастают с ростом суммы квантовых чисел (n+l), а при равных значениях (n+l) ниже лежит уровень с меньшим n”. Экранирование ядра. Одноэлектронный подход к проблеме строения многоэлектронного атома. n+l N,l АО n+l n,l АО n+l n,l АО n+l n,l АО n+l n,l АО ...

Скачать
22682
0
1

... Модель атома водорода 1926- Шрёдингер-Волновое уравнение 1927- Гейзенберг-Соотношение неопределённостей. 1983- Туннельный микроскоп (...Академик В.Гинзбург (ФИАН): “Ну и дожили!”) Раздел 1. Экспериментальные основы квантовой механики. Волны материи. Простейшие полуклассические модели движений   Содержание: Движение частицы и движение сплошной среды. Корпускула и волна. Излучение и вещество ...

0 комментариев


Наверх