1.4 Системы единиц
Первой системой единиц ФВ по существу были упоминавшиеся выше метрические единицы ФВ. Однако только, в 1832 г. К. Гаусс предложил впредь строить системы единиц ФВ как совокупности основных и производных единиц. В построенной им системе основными единицами ФВ были миллиметр, миллиграмм и секунда.
В дальнейшем появились другие системы единиц ФВ, также-базирующиеся на метрических единицах ФВ, но с различными основными единицами. Наиболее известные из этих систем следующие.
Система СГС (1881 г.). Основные единицы ФВ – сантиметр, грамм, секунда. Система получила большое распространение в физике. В дальнейшем были созданы некоторые разновидности этой системы для электрических и магнитных ФВ.
Система МТС (1919 г.). Основные единицы ФВ – метр, тонна (1000 кг), секунда. Большого распространения эта система не получила.
Система МКГСС (конец XIX в). Основные единицы ФВ – метр, килограмм-сила, секунда. Эта система получила большое распространение в технике.
Система МКСA (1901 г.). Иногда ее называют системой Джорджи (по имени ее создателя). Основные единицы ФВ – метр, килограмм, секунда и ампер. Эта система в настоящее время вошла составной частью в новую международную систему единиц ФВ.
Все основные и производные единицы любой системы единиц ФВ называются системными единицами ФВ (по отношению к данной системе). Наряду с системными существуют и так называемые внесистемные единицы, т. е. такие, которые не входят в систему единиц ФВ. Все внесистемные единицы ФВ можно разделить на две группы: 1) не входящие ни в одну из известных систем, например: единица длины – икс-единица, единица давления – миллиметр ртутного столба, единица энергии – электрон-вольт; 2) являющиеся внесистемными лишь по отношению к некоторым системам, например: единица длины – сантиметр – внесистемная для всех систем, кроме СГС; единица массы – тонна – внесистемная для всех систем, кроме МТС; единица электрической емкости – сантиметр – внесистемная для всех систем, кроме СГСЭ·.
Наличие разных систем единиц ФВ, а также большого числа внесистемных единиц ФВ создает неудобства, связанные с расчетами, необходимыми при переходе от одних единиц ФВ к другим. В связи с ростом научно-технических связей между странами стала необходимой унификация единиц ФВ. В результате была создана новая Международная система единиц ФВ.
Международная система единиц. В 1960 г. XI Генеральная конференция по мерам и весам утвердила Международную систему единиц ФВ SI··.
В СССР и в странах — членах СЭВ — SI введена в стандарт СЭВ СТСЭВ 1052 – 78 «Метрология. Единицы физических величин» Сведения об основных единицах ФВ SI приведены в табл. 1.
Две, по существу производные, единицы ФВ SI: единица плоского угла – радиан (русское обозначение рад, международное – rad) и единица телесного угла — стерадиан (русское обозначение ср, международное – sr) – официально производными не считаются и называются дополнительными единицами ФВ SI. Причина их обособления в том, что они установлены по определяющим уравнениям j = l/r и y = S/R2, где j - плоский угол, вершина которого совпадает с центром дуги длины l и радиуса r; y - телесный угол, вершина которого совпадает с центром сферы радиуса R, и который вырезает на поверхности сферы площадь S. Единицы
[j] = 0 и [y] =
безразмерны, а следовательно, не зависят от выбора основных единиц ФВ системы.
Производные единицы ФВ SI образуются из основных и дополнительных по правилам образования когерентных единиц ФВ.
Основные единицы физических величин SI Таблица 1.
Например: угловое ускорение – радиан на секунду в квадрате (рад/с2), напряженность магнитного поля – ампер на метр (А/м), яркость — кандела на квадратный метр (кд/м2).
Единицы ФВ SI, имеющие специальные наименования, приведены в табл. 2.
Международная система имеет следующие преимущества перед другими системами единиц ФВ: универсальна, т. е. охватывает все области физики; когерентна; ее единицы ФВ в большинстве случаев практически удобны и были широко распространены ранее.
Единицы, разрешенные к применению в странах СЭВ. Указанные выше преимущества SI в целом еще не позволяют утверждать, что ее единицы ФВ во всех случаях более приемлемы, чем какие-либо другие. Например, для измерения больших промежутков времени месяц и век могут оказаться более удобными единицами, чем секунда; для измерения больших расстояний световой год и парсек могут, оказаться более удобными единицами чем метр и т. п.
Производные единицы физических величин SI, имеющие специальные наименования. Таблица 2.
... повторных измерениях остаются постоянными или изменяются закономерно, обычно прогрессируя. Постоянные систематические погрешности свидетельствуют о высоких или недостаточных показателях метрологической надёжности применяемого средства измерения и могут быть устранены (учтены) предусмотренными аппаратурными методами коррекции или введением поправок в результаты измерений. Одной из распространённой ...
... и (или) хранения единицы и передачи ее размера другим средствам измерений. Среди них можно выделить рабочие эталоны разных разрядов, которые ранее назывались образцовыми средствами измерений. Классификация средств измерений проводится и по другим различным признакам. Например, по видам измеряемых величин, по виду шкалы (с равномерной или неравномерной шкалой), по связи с объектом измерения ( ...
... вероятность даже в случае, когда закон распределения погрешности неизвестен или отличается от нормального. В случае, если проведено всего одно измерение, точность измерения физической величины (если оно проведено тщательно) характеризуется точностью измерительного прибора. 3. ПОГРЕШНОСТИ КОСВЕННЫХ ИЗМЕРЕНИЙ Часто при проведении эксперимента встречается ситуация, когда искомые величины ...
... , в которых проградуированы все существующие СИ одной и той же величины. Это достигается путем точного воспроизведения и хранения в специализированных учреждениях установленных единиц ФВ и передачи их размеров применяемым СИ. Воспроизведение единицы физической величины — это совокупность операций по материализации единицы ФВ с наивысшей в стране точностью посредством государственного эталона или ...
0 комментариев