2.2 Датчики газів на основі нових матеріалів та наноструктур

 

Як було показано вище, досить відомим у якості матеріалу які використовуються в газовій детекції є оксиди металів, наприклад In2O3. Їх основна область використання- детекція NOx (NO та NO2).

В [7] показано чутливість на NОx сильнотекстурованої (Рис.12 ) плівки In2O3 отриманої методом MOCVD (осадження металлорганічних сполук із газової фази). Дана структура надзвичайно чутлива на парціальний тиск NOx (Рис.13), а також на робочу температуру (Рис.14)

Fig. Рис.12 Фотографія вивисокотекстурованої поверхні поверхні плівки bc- In2O3 нанесеної на сапфір (0. [7]

Рис.13. Зміна опору плівка в часі від питомого тиску 0.002,

0.004, 0.008, 0.01, 0.05, 0.15, 0.5, 1, 10 mбар NOx при кімнатній температурі. [7]

Рис.14 Вплив температури на часову залежність нормалізованого опору

при 0.01 mбар NOx. [7]

Показано, що такий датчик придатний і для детекції кисню, але його чутливість на кисень значно нижча (Рис.15,16).


Рис.15 Вплив температури на залежність відповіді датчику від парціального тиску NOх [7]

Рис.16 Вплив температури на залежність відповіді датчику від парціального тиску O2 [7]

Останній час в якості газових детекторів досить модними є детектори на базі гетероструктур GaN/AlGaN.

Так наприклад в [8] , показа можливість детектування даними структурами наступних газів: H2, CO, C2H2, NO2. Така можливість здійснена на базі GaN/AlGaN транзистора (шари GaN, AlGaN, AlN отримано плазма індукованою МПЕ-молекулярно-пучкова епітаксія) з високою рухливістю електронів (Рис.17).

Рис.17 а) .Переріз газового датчику на основі GaN/AlGaN – транзистору на рухливих електронах (HEMT). Пунктирна лінія показує область двомірного електронного газу в GaN/AlGaN гетеропереході. [8]

В даному транзисторі, в якості затвору виступає каталітично активний пористий електрод з платини (Рис. 17 б), який пропускає скрізь себе H до шару GaN. В свою чергу Pt виступає як каталізатор окислення GaN молекулами O2, CO, C2H2, NO2 (Рис.18)

 

Рис.17 б) Геометричні розміри поверхневого контакту детектора з контакту Pt активним електродом. (Gate-затвор, source -стік, drain- витік) [8]

 

Рис.18. Пропонований механізм газової детекції датчику Pt -HEMT газового датчику (Ha, Hi: місце адсорбований водень, Xa,

Xi: адсорбовані молекули досліджуваного газу). [8]

Рис.19. ВАХ датчику при різних концентраціях H2 для 4% суміші O2 в N2 при температурі 300 оC . [8]

Наявність адсорбції H та окислення GaN O2, CO, C2H2, NO2 призводить до зміни провідності між витоком і стоком (Рис. 17 б). Залежність чутливості від вмісту H2 показано на (мал 19) [8].



Рис.20. Відносна зміна струму стік-витік (сигналу) в Pt–Ga- -HEMT від концентрації газів H2, C2H2, CO, NO та NO2 розчинених в 4% O2 суміші N2. Вимір відбувся при 400 оС. [8]

Чутливість максимальна (відносна зміна струму між стоком та витоком) при 400 оС, а відносна чутливість максимальна для випадку молекул водню (Рис. 20).

Можливо тому, що на даний час найбільша чутливість датчиків на основі GaN/AlGaN гетероструктур, найбільш зусиль прикладається до вдосконалення датчиків на даних структурах. Так в [9] показано можливість використання в МОН транзисторах а в [10] діодів Шоттки на базі GaN/AlGaN гетероструктур (GaN/AlGaN структура отримана методом MOCVD) з додатковим діелектричним шаром оксиду скандію (Sc2O3) (Рис. 21).



Рис.21. Фотографія та переріз метал-оксид-напівпровідник-HEMT стуктури- детектора водню. [9]

Рис.22. Часова залежність струму стік-витік при різних швидкостях зміни концентрації H2 (від чистого азоту до 1% H2/99% N2)

Другий малюнок показує оборотність процесу. [9]

Каталітично дисоціований платиновим елетродом водень дифундує до інтерфейсу Sc2O3/AlGaN, що приводить до зменшення ефективного бар’єру в МОН затворі на 30-50 meV, що в свою чергу дає зріст струму витік- стік [9]. Ця зміна дає ріст чутливості датчика та дає можливіст його використання при кімнатних температурах [9] (Рис.22)

В [11] показано значний ріст чутливості датчика на базі діода Шоттки з GaN структурою (GaN/AlGaN структура отримана методом MOCVD) (Рис.) при рості температури детектування з 200 до 800 оС. Цей зріст обумовлений пониженням барєру Шоттки на 11-120 meV (Рис.25)[11]


Рис.23. Переріз ітруктури Pt–AlGaN/GaN Шоттки діодного газового детектора. [11]

Рис.24. Залежність ВАХ характеристики Pt-AlGaN/GaN Шоттки діода при 0 та 5% концентраціях водню в азоті, при 200 та 800 оС. [11]

Рис.25. Залежність висоти барєру Шоттки в Pt-

AlGaN/GaN діоді в N2 та 5% H2/95% N2 як функція температури. [11]

Значно чутливішу (1% H2) структуру на основі GaN/AlGaN структури отримали (ріст структури здійснили МПЕ) при використанні двох діодів Шоткі, в одному з яких один має Pt, другий -Ti/Au контакт (Рис. 24-26) [12]. Ti/Au покриття забезпечує непроникнення водню до шару напівпровідника, а це в свою чергу дає можливість здійснювати диференціальне (порівняльне) вимірювання обох діодів, що значно підвищує чутливість датчика [12].

Рис.26. Мікрофотографія диференціальних діодів детектора газу.Активний діод виконаний з 10 nm Pt електродом, а порівняльний з Ti/Au електродом. [12] Рис.27. Абсолютні та порівняльні струми в HEMT діодах виміряні при 25°C. [12] Рис. 28. Абсолютні та порівняльні струми в HEMT діодах виміряні при 25°C. [12]

Для підвищення стабільності в часі роботи датчиків водню автори [12] в подальшому пропонують використати TiB2 [13] в якості омічного контакту в гетероструктурі діоду (Рис. 29-30).

Рис.29. Схематичне зображення HEMT діодного детектору водню з використанням TiB2 омічного контакту. Пунктирна лінія –область двомірного електронного газу. [13]

Рис.30. Порівняння стабільності в часі детекції газових детекторів при використанні електроду з і без TiB2. [13]

Цікава конструкція на базі In2O3 наношару (отримано з допомогою МПЕ) високочутлитвого (~40 ppb – 40 частинок на мільярд) детектору озону представлена в [14] (Рис.31-32). Автори інтегрували активний шар In2O3 з синім LED (light emitted diode)- високоінтенсивний діод (Рис. 32), випромінювання якого активує оксидний шар.



Рис.31. Відношення опору шару In2O3 при наявності озону до опору при освітленні ультрафіолетовим випромінюванням діодом, в залежності від енергії фотону та від концентрації озону. [14]

Рис.32. Схематичний переріз та фотографія детектору озону з ультрафіолетовим активаторним GaInN

LED на квантових ямах. [14]

В [15] показано, що в якості детектора водню є можливість використання резистивного шару на основі силікату вуглецю (SiC). Для цього на поверхню Si (001) n- типу нанесено епітаксіальну 4 мкм плівку 3C- SiC (газофазна епітаксія) з NiCr омічними контактами (Рис. 33). Детекцію водню проведено в суміші з Ar. Показано, що поріг чутливості датчику є на рівні 0.33% H2.

Також показано, що датчик з 3C- SiC/Si є більш чутливий порівняно з простим датчиком Si (001) n- типу (Рис. 34). В праці є сумніви, чи відбувається адсорбція молекул H2 до поверхні напівпровідника, чи відбувається дисоціація H2 і в подальшому атомарний водень проникає до контакту метал-напівпровідник [15].



Рис.33. Схематичне зображення детектору водню з резистивним шаром 3C–SiC на n-type Si(001).

На часовій залежності зображено зміну вмісту водню в аргоні з кроком 10% (від 0 до 100%). Пунктирна лінія представляє детекцію без, суцільна з шаром 3C–SiC. Температура детекції 50 оС. [15]

Рис.34. Детекція водню при 50 оС (без і з шаром 3C–SiC). Покрокове зростання та зменшення на 10 % концентрації водню в аргоні- показує оборотність процесу адсорбції водню. [15]

Рис.35. Схематичне зображення та фотографія (електронного мікроскопу) датчику газу на основі нанодротів з ZnO на SiO2 Si- субстраті, та вольтамперна характеристика такого датчику. [16]

Рис.36. Крива залежності чутливості детектора на нанодротів із SnO2 від концентрації NO2 при температурі 225 °C. [16]

В якості детектора NO2 було запропоновано нанодроти ZnO [16] на SiO2/Si субстраті (Рис. 35).

Ефект зв’язку дефектів з кисневими вакансіями дозволяє здійснити детекцію газів. Показано, що наявність NO2 змінює опір сітки з ZnO нанодротів. При чому, оптимальною для детекції є температура 225 ОС (Рис.36).

Використання ж нанодротів на базі GaN (Рис.37), дозволило здійснити детекцію водню [17]. Показано, що водень міняє опір сітки з таких нанодротів, при чому, наявність паладієвого покриття значно збільшує чутливість детектора (Рис.38)

Рис.37. Фото сканіруючого мікроскопу GaN нанодротів. [17] Рис.38. Залежність опору сітки з нанодротів від концентрації водню в повітрі, при використанні нанодротів без та з паладієвим покриттям (в кімнатній температурі). Чутливість детекції при паладієвому покритті значно вища, як без нього. [17]

Рис.39 Схематичне зображення газового сенсору на основі вуглецевих нанотрубок (DWCNT) на діелектричній мембрані. [18] Рис.40.Залежність модуля трансмісії нанотрубок від частоти електромагнітної хвилі до (чорна лінія) і після (сіра лінія) адсорбції газу. [18]

В [18] в якості детектора азоту показано можливість використання вуглецевих нанотрубок. Вуглецеві нанотрубки покривають тонку діелектричну мембрану (Рис. 39). Принцип дії даного детектора базується на зміні прозорості -S21 (трансмісії) системи нанотрубок для високочастотного діапазону (0-110 ГГц) (Рис.40).

 


Информация о работе «Фізико-технологічні основи одержання чутливих елементів для датчиків газів»
Раздел: Физика
Количество знаков с пробелами: 35866
Количество таблиц: 22
Количество изображений: 41

Похожие работы

Скачать
109443
15
38

... чено раніше, якщо вибрати правильний напрямок поширення хвилі, можна створити бездротової датчик температури. Середовище поширення міняється разом з температурою, впливаючи на дані на виході. Нижче наведені деякі найбільш загальні способи застосування датчиків акустичних хвиль. Термодатчик будується на термозалежності швидкості поверхневих хвиль, яка визначається напрямком і типом кристалічного ...

Скачать
17499
2
9

... можна поділити на монокристали, монокристалічні плівки, нанесені на діелектричні підкладки, і спечені полікристалічні напівпровідники [3]. Використання монокристалів в якості адсорбційних чутливих елементів в газовому аналізі не оправдано внаслідок їх малої чутливості, складної технології виготовлення і ненадійності в експлуатації (проблема старіння). У випадку порошків і полікристалічних плі ...

Скачать
123841
18
78

... і працездатності людини в процесі труда. Максимальне зменшення числа шкідливих впливів, створення комфорту — от головні задачі охорони праці. Тема дипломної роботи — “Моделювання процесу обробки сигналів датчика у вихровому потоковимірювачі”. Машинний зал ПЕОМ є помешканням з підвищеною небезпекою поразки людини електричним струмом, тому що в даному помешканні присутня можливість одночасного ...

Скачать
111026
0
7

... лакмус. Вода спочатку пропускається через колонку з катіонітом, а потім - з аніонітом чи у зворотному порядку (конвекційна система), або ж воду пропускають через одну колонку, що містить одночасно катіоніт і аніоніт (змішана колонка). В аптечній практиці може бути використаний демінералізатор, що містить катіонітну й аніонітну іонообмінні колонки, датчик контролю електроопору знесоленої води і ...

0 комментариев


Наверх