2.3 Технології, що використовуються при побудові датчиків газів
Для отримання сучасних високочутливих датчиків газів, коли надзвичайно важливою є досконалість (геометрія, склад) поверхні напівпровідника, металу що використовується у виробництві датчиків газів, необхідне використання сучасних високих технологій: 1) отримання хімічно надзвичайно чистих вихідних речовин, сполук 2) створення з їх використанням максимально досконалих структур.Обидва пункти охоплюють досить широкий спектр фізичних, хімічних технологій. Однак стосовно самої побудови датчиків слід мабуть відмітити наступні високотехнологічні методи сьогодення: CVD (Chemical vapor deposition)- хімічне осадження з газової фази ( її різновидністей - MOCVD -Metal Organic Chemical Vapor Deposition – осадження металлорганічних сполук із газової фази, PACVD (Plasma Assisted Chemical Vapour Deposition), PECVD - (Plasma Enhanced Chemical Vapour Deposition) осадження в присутності плазми, LCVD (Laser CVD) – в присутності лазера) та MBE (Molecular Beam Epitaxy)- молекулярно променева (пучкова) епітаксія (МПЕ), методи травлення, фотолітографії, полірування.
CVD-процес (Chemical vapor deposition) хімічний процес, що використовується для отримвання високочистих твердих матеріалів. Процес часто використовується в індустрії напівпровідників для створення тонких плівок. В типовому CVD-процесі, підложка розташовується в парах одного або декількох речовин, які, вступаючи в реакцію і/або розкладаючись, створюють на поверхні підложки необхідну речовину. Часто утворюється газоподібний продукт реакції, що виноситься з камери потоком газу. За допомогою CVD-процесу створюються матеріали різних структур : монокристали, полікристали, аморфні тіла та епітаксіальні. Приклади матеріалів: кремній (мікросхемотехніка), вуглецеве волокно, вуглецеве нановолокно, вуглецеві нанотрубки, SiO2, діелектрики, синтетичні алмази... Наприклад, полікристалічний кремній отримують із силанів при наступній реакції [19]:
SiH4 → Si + 2 H2
Температура при цьому між 600 та 650 °C , а тиск від 25 до 150 Па, а швидкість осадження 10-20 нм за хвилину. Діоксид кремнію може наноситися декількома процесами:
SiH4 + O2 → SiO2 + 2 H2
SiCl2H2 + 2 N2O → SiO2 + 2 N2 + 2 HCl
Si(OC2H5)4 → SiO2 + byproducts
MOCVD – метод епітаксіального росту матеріалів особливо напівпровідників шляхом термічного розкладу (піроліз) із органічних газів, що містять необхідні хімічні елементи. Наприклад арсенід галлію (GaAs) вирощують на підложці з використанням в реакторі триметилгаллія (CH3)3Ga та триметиларсену (C6H5)3As. Сам термін запропонував засновник методу Гарольд Марасевит в 1968 році [20]. На відміну від MПE ріст здійснюється не в вакуумі, а в присутності газу при помірному тиску (від 2 до 100 кПа). Система складається з реактора – камери, зробленого з хімічно інертного матеріалу, який повинен видержувати високу температуру. Сама підложка розташована на підложкотримачі з контролем температури. Газ до системи вводиться шляхом продування так званого транспортного газу (найчастіше H2 або N2) через металорганічну рідину і забирає з собою частину металорганічних парів.
Молекулярно-пучкова епітаксія (МПЕ) [21] - технологія епітаксіального росту в умовах надвисокого вакума. Дозволяє отримувати гетероструктури заданої товщини з моноатомно гладкими гетеропереходами і з заданим профілем легування. В установках МПЕ є можливість досліджувати якість плівок ‘in situ’ (тобто прямо в ростовій камері під час росту). Для процесу епітаксії необхідні надзвичайно чисті підложки з атомарно гладкою поверхнею. Технологія МПЕ була створена в кінці 1960-х років Дж. Р. Артуром (J. R. Arthur) и Альфредом Чо (Alfred Y. Cho). Це надзвичайно потужна та коштовна технологія.
Як було показано в попередньому розділі, саме ці технології отримання високочистих з докладною геометрією структур, лежать в основі перспективних на сучасний стан датчиках газів.
Висновки
Узагальнюючи вище сказане, слід відмітити наступне:
1. Створення чутливих датчиків газів - широкоформатна задача науки та техніки, яка вимагає поєднання високотехнологічних напрямків фізики, хімії;
2. Більшість сучасних елементів датчиків газу – поверхневі датчики газу, принцип дії яких опирається на поверхневих явищах – зміні опору напівпровідника під впливом адсорбованого газу (найбільш поширеним при цьому є використання в якості детектуючого елементу оксиду олова);
3. Надзвичайно важливим є пошук та створення нових, високої чистоти матеріалів (наприклад, GaN, InN...) , побудова конструктивно нових - нанорозмірних структур (наношарів, нанодротів, наностовпчиків, нанокрапок ...), вдосконалення технологій росту даних структур (з використанням процесу осадження з газової фази, МПЕ), обробки поверхонь, нанесення контактів;
4. І хоча при порівнянні параметрів детекторів, детектори газу на новітніх матеріалах та структурах ще не випереджають комерційних (у випадку детекції водню та моноксиду вуглецю, як це показано вище - діапазони детекції вже перетинаються), майбутнє без сумніву за першими.
Тільки поєднання високих технологій на базі сучасних фізики та хімії може забезпечити низьку ціну, малі розміри, добре співвідношення сигнал/шум, простоту та надійність конструкції, обратимість реакції на гази, селективність, нечутливість до отруєння, високу швидкодію, сумісність з електронними схемами управління, температурну та часову стабільність, тобто все те, що ставиться як вимога до досконалого детектору газу.
Література
1. Плешков А.П. Электрофизические свойства пленок Sn2O2 и гетероструктур n-Sn2O2/p-Si. Автор. канд. дис. Воронеж, -2007, 15 с.
2. http://www.insovt.ru/sensors/
3. О.А. Агеев, В.М. Мамиконова, В.В. Петров, В.Н. Котов, О.Н. Негоденко Микроэлектронные преобразователи неэлектрических величин. Изд.-Таганрог, -2000, -155с.
4. Игнатьева Н.О. Датчики газа Figaro http://www.platan.ru/article/paper.pdf.
5. M. Graf, D. Barrettino, H. P. Baltes, A. Hierlemann CMOS Hotplate Chemical Microsensors. Springer-Verlag Berlin Heidelberg, -2007, -125 p.
6. http://www.appliedsensor.com/products/
7. M. Ali, Ch.Y. Wang, C.-C. Rohlig, V. Cimalla, Th. Stauden, O. Ambacher, NOx sensing properties of In2O3 thin films grown by MOCVD, Sensors and Actuators B №129, pp. 467–472, -2008.
8. J. Schalwig, G. MuЁller, M. Eickhoff, O. Ambacher, M. Stutzmann, Gas sensitive GaN/AlGaN-heterostructures Sensors and Actuators B №87, pp. 425–430, -2002.
9. B. S. Kang, R. Mehandru, S. Kim, and F. Ren,R. C. Fitch, J. K. Gillespie, N. Moser, G. Jessen, T. Jenkins, R. Dettmer, D. Via, and A.Crespo, B. P. Gila, C. R. Abernathy, and S. J. Pearton, Hydrogen-induced reversible changes in drain current in Sc2O3 /AlGaN/GaN high electron mobility transistors Appl. Phys. Lett. -84, №23, pp. 4635-4637, -2004.
10. B. S. Kang and F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, AlGaN/GaN-based metal–oxide–semiconductor diode-based hydrogen gas sensor, Appl. Phys. Lett. -84, №7, pp. 1123-1125, -2004.
11. Junghui Song and Wu Lu, Jeffrey S. Flynn and George R. Brandes, Pt-AlGaN/GaN Schottky diodes operated at 800 °C for hydrogen sensing, Appl. Phys. Lett. -87, pp. 1335011-3, -2005.
12. Hung-Ta Wang, T. J. Anderson, and F. Ren, Changzhi Li, Zhen-Ning Low, and Jenshan Lin, B. P. Gila and S. J. Pearton, A. Osinsky and Amir Dabiran, Robust detection of hydrogen using differential AlGaN/GaN high electron mobility transistor sensing diodes, Appl. Phys. Lett. -89, pp. 2421111-3, -2006.
13. Hung-Ta Wang, T. J. Anderson, B. S. Kang, and F. Ren,Changzhi Li, Zhen-Ning Low, and Jenshan Lin, B. P. Gila and S. J. Pearton, A. Osinsky and Amir Dabiran, Stable hydrogen sensors from AlGaN/GaN heterostructure diodes with TiB2-based Ohmic contacts, Appl. Phys. Lett. -90, pp. 2521091-3, -2007.
14. Ch. Y. Wang,a_ V. Cimalla, Th. Kups, C.-C. Rцhlig, Th. Stauden, O. Ambacher, M. Kunzer, T. Passow, W. Schirmacher, W. Pletschen, K. Kцhler, and J. Wagner, Integration of In2O3 nanoparticle based ozone sensors with GaInN/GaN light emitting diodes, Appl. Phys. Lett. -91, pp. 1035091-3, -2007.
15. Timothy J. Fawcett John T. Wolan, Rachael L. Myers, Jeremy Walker, and Stephen E. Saddow, Wide-range (0.33%–100%) 3C–SiC resistive hydrogen gas sensor development, Appl. Phys. Lett. -85, №3, pp. 416-419,-2004.
16. M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong, Gas sensing properties of defect-controlled ZnO-nanowire gas sensor, Appl. Phys. Lett., -93, pp. 2631031-3, -2008.
17. Wantae Lim, J. S. Wright, B. P. Gila, Jason L. Johnson, Ant Ural, Travis Anderson,F. Ren, and S. J. Pearton, Room temperature hydrogen detection using Pd-coated GaN nanowires, Appl. Phys. Lett., -93, pp. 0721091-3, -2008.
18. M. Dragoman, K. Grenier, D. Dubuc, L. Bary, R. Plana, E. Fourn, E. Flahaut, Millimeter wave carbon nanotube gas sensor, Journ. of Appl. Phys. -101, pp. 1061031-2, -2007.
19. http://en.wikipedia.org/wiki/Chemical_vapor_deposition
20. http://en.wikipedia.org/wiki/Metalorganic_vapour_phase_epitaxy
21. http://en.wikipedia.org/wiki/Molecular_beam_epitaxy
... чено раніше, якщо вибрати правильний напрямок поширення хвилі, можна створити бездротової датчик температури. Середовище поширення міняється разом з температурою, впливаючи на дані на виході. Нижче наведені деякі найбільш загальні способи застосування датчиків акустичних хвиль. Термодатчик будується на термозалежності швидкості поверхневих хвиль, яка визначається напрямком і типом кристалічного ...
... можна поділити на монокристали, монокристалічні плівки, нанесені на діелектричні підкладки, і спечені полікристалічні напівпровідники [3]. Використання монокристалів в якості адсорбційних чутливих елементів в газовому аналізі не оправдано внаслідок їх малої чутливості, складної технології виготовлення і ненадійності в експлуатації (проблема старіння). У випадку порошків і полікристалічних плі ...
... і працездатності людини в процесі труда. Максимальне зменшення числа шкідливих впливів, створення комфорту — от головні задачі охорони праці. Тема дипломної роботи — “Моделювання процесу обробки сигналів датчика у вихровому потоковимірювачі”. Машинний зал ПЕОМ є помешканням з підвищеною небезпекою поразки людини електричним струмом, тому що в даному помешканні присутня можливість одночасного ...
... лакмус. Вода спочатку пропускається через колонку з катіонітом, а потім - з аніонітом чи у зворотному порядку (конвекційна система), або ж воду пропускають через одну колонку, що містить одночасно катіоніт і аніоніт (змішана колонка). В аптечній практиці може бути використаний демінералізатор, що містить катіонітну й аніонітну іонообмінні колонки, датчик контролю електроопору знесоленої води і ...
0 комментариев