4 ряда по 7 светильников.
.
Определение полной мощности цеха
Найдем общую активную, реактивную и полную мощности цеха. Итоговая мощность сложиться из суммы мощностей отделений и мощности осветительных приборов. Запишем соответствующие значения:
2.6 Выбор компенсатора реактивной мощности
Силовые или косинусные конденсаторы и установки на их основе используются в качестве местных источников реактивной мощности. Их применение позволяет разгрузить электрические сети от реактивной составляющей тока и тем самым с одной стороны уменьшить сечение выбираемых проводов, шин, кабелей, с другой – уменьшить потери электроэнергии.
Выбираем комплектную компенсаторную установку и устанавливаем ее в ЦТП.
Итак, мощность компенсаторной установки найдем из выражения:
k-коэффициент повышения коэффициента мощности (cosj) путем организационных мероприятий, k=0,9 для практических расчетов.
Компенсацию реактивной мощности производят до получения значения cosφк=0,92…0,95.
Cosφ=0,84 - до компенсации; Сosφк=0,94 – после компенсации.
j1=330 и j2=200 – углы сдвига фаз до и после компенсации мощности.
P- расчетная активная мощность.
Тогда:
Выбираем комплектную конденсаторную установку УКМ-58–04–125-25 УЗ.
Конденсаторные установки УКМ модульной конструкции мощностью 125 кВар, оснащены самовосстанавливающимися компенсаторными конденсаторами, имеющие срок службы до 100000 часов при постоянной подаче напряжения, оснащены автоматическими регуляторами мощности.
Так как мы поставили компенсирующую установку, то суммарная реактивная мощность изменилась, вследствие чего изменится и полная мощность:
2.7 Выбор трансформатора ЦТП
При выборе числа и мощности силовых трансформаторов важными критериями являются надежность электроснабжения, стоимость оборудования и различные потери связанные с трансформацией электрической энергии. Оптимальный вариант выбирается исходя из сравнения капиталовложений и годовых эксплуатационных расходов.
Сооружение однотрансформаторных подстанций не всегда обеспечивает наименьшие затраты. Если же по условиям резервирования питания необходима установка более одного трансформатора, то нужно стремиться к тому, чтобы их было не более двух. Выбор числа трансформаторов ЦТП связан с режимом работы цеха предприятия.
Двухтрансформаторные подстанции экономически более целесообразны, чем подстанции с одним или большим числом трансформаторов.
Учитывая требования ПУЭ, вышеизложенные сведения и то, что промышленное предприятие является потребителем II-ой категории, схему ЦТП принимаем 2-х трансформаторную.
Мощность каждого трансформатора на 2-х трансформаторной ЦТП выбирается из условия:
Но при этом необходимо учесть потери трансформатора при холостом ходе и коротком замыкании, которые составляют 2% от расчетной активной мощности и 10% от расчетной реактивной. В итоге получаем выражение:
Выбираем трансформаторы ТСЗ-160/10 – 3-х фазный, сухой, исполнение по защите от воздействия окружающей среды – защищенное, пыленепроницаемое, общепромышленной установки.
Характеристики трансформатора ТСЗ-160/10
номинальная мощность – 160кВА
номинальное напряжение ВН – 10кВ
номинальное напряжение НН –0,23; 0,4 кВ
потери ХХ – 0,32 кВт
потери КЗ – 2 кВт
напряжение КЗ – 4,5%
ток х.х от номинального – 2,6%
В период нормальной работы каждый из трансформаторов будет загружен на:
.
Выбор номинальной мощности трансформатора производиться с учетом необходимой мощности при выходе из строя одного из трансформаторов. Оставшийся трансформатор должен принять на себя всю нагрузку подстанции или с некоторым её ограничением, отключение потребителей III категории (в данном случае отключение некоторых осветительных приборов).
2.8 Выбор сечений шинопроводов и кабельных линий
На промышленных предприятиях в связи с увеличением их мощности и ростом плотности электрических нагрузок появилась необходимость передавать токи до 5000 А и более. В этих случаях целесообразно применять специальные мощные шинопроводы, которые имеют преимущества перед линиями, выполненными из большого числа параллельно проложенных кабельных линий. Преимущества эти следующие: большая надежность, возможность индустриализации монтажных работ, а также доступность наблюдения и осмотра шинопроводов в процессе эксплуатации.
Для удобства эксплуатации, надежности электроснабжения и экономическим показателям примем следующую схему монтажа шинопровода.
Магистральный шинопровод (ШМА), предназначен для магистральных четырехпроводных электрических сетей в системе с глухозаземленной нейтралью напряжением до 1 кВ. Они прокладываются на вертикальных стойка высотой 3 м. В качестве опорных конструкций применяют кронштейны или тросовые подвески. ШМА собраны из прямоугольных алюминиевых шин, изолированных, расположенных вертикально и зажатых между специальными изоляторами внутри перфорированного контура.
Число шин в магистральных шинопроводах: 3, 4, 6 (три спаренных). Магистральный шинопровод состоит из прямых и угловых секций с поворотом шин на ребро и плоскость, ответвительных вертикальных и горизонтальных секций. Шины соединяют в основном сваркой при сборке блоков.
Магистральные шинопроводы прокладываются на вертикальных стойка высотой 3 м. В качестве опорных конструкций применяют кронштейны и тросовые подвески.
Распределительные шинопроводы ШРА предназначены для передачи и распределения электроэнергии напряжением 380/220кВ, кроме того, имеется возможность непосредственного присоединения к ним электроприемников в системах с глухозаземленной нейтралью. Распределительные шинопроводы прокладываются аналогично магистральным.
Каждый приемник электрической энергии запитывается кабелем от РП отделения. Примем к прокладке кабели марки АВВГ. Выбор такой марки кабеля обуславливается низкой коррозийной активностью среды, защищенностью кабеля от внешних воздействий и повреждений.
В данной курсовой работе расчет сечений кабелей и шинопроводов ведется только по наибольшему допустимому току, без проверки на термическую и динамическую прочность.
Как известно ток в токопроводящей жиле вычисляется по формуле:
,
где - номинальная мощность (при ПВ=1) на конце проводника;
- номинальное напряжение, в данном случае ;
- средний КПД всего отделения.
- коэффициент мощности электроприемника. Как оговаривалось ранее, средний коэффициент мощности цеха равен ;
Выбор сечения магистрального шинопровода
Запишем суммарные номинальные мощности отделений:
Выбираем магистральный шинопровод по максимальному току (учитываем аварийный режим) ШМА4-1000-32-1УЗ – магистральный шинопровод, состоящий из 4 шин сечением 32 мм2, Iном=1000 А, пожаробезопасность 1, для умеренного климата, для внутренней установки.
Выбираем магистральный шинопровод по максимальному току (учитываем аварийный режим) ШМА4-630-32-1УЗ – магистральный шинопровод, состоящий из 4 шин сечением 32 мм2, Iном=630 А, пожаробезопасность 1, для умеренного климата, для внутренней установки.
Выбор автоматических выключателей и сечения распределительных шинопроводов
· Автоматы для цеховой понизительной подстанции
Автоматические выключатели (автоматы), не обладая недостатками предохранителей, обеспечивают быструю и надежную защиту проводов и кабелей сетей как от токов перегрузки, так и от токов короткого замыкания. Кроме того они используются для управления при нечастых включениях и отключениях. Таким образом автоматические выключатели совмещают в себе функции защиты и управления.
Для выполнения защитных функций автоматы снабжаются либо только тепловыми, либо только электромагнитными расцепителями, либо комбинированными (тепловыми и электромагнитными). Тепловые расцепители осуществляют защиту от токов перегрузки, электромагнитные – от токов короткого замыкания.
Действие тепловых расцепителей автоматов основано на использовании нагрева биметаллической пластинки, изготовленной из спая двух металлов с различными коэффициентами теплового расширения. В расцепители при токе, превышающем тот, на который они выбраны, одна из пластин нагревается больше, и вследствие большего её удлинения воздействует на отключающий пружинный механизм. В результате чего коммутирующее устройство аппарата размыкается.
Тепловой расцепитель автомата не защищает питающую линию или асинхронный двигатель от токов короткого замыкания. Это объясняется тем, что тепловой расцепитель, обладая большой тепловой инерцией, не успевает нагреться за малое время существование токов КЗ.
Электромагнитный расцепитель представляет собой электромагнит, который воздействует на отключающий пружинный механизм. Если ток в катушке превышает определенное, заранее установленное значение (ток трогания или ток срабатывания), то электромагнитный расцепитель отключает линию мгновенно. Настройку расцепителя на заданный ток срабатывания называют уставкой тока. Уставку тока на мгновенное срабатывание называют отсечкой. Электромагнитные расцепители не реагируют на токи перегрузки, если они меньше уставки срабатывания.
В зависимости от наличия механизмов, регулирующих время срабатывания расцепителей, автоматы разделяются на неселективные с временем срабатывания 0,02..0,1с; селективные с регулируемой выдержкой времени и токоограничивающие с временем срабатывания не более 0,005с.
По выбранной схеме электроснабжения цеха ЦТП должна содержать три автоматических выключателя: по одному на выходе с каждого трансформатора и один межсекционный выключатель. Выключатели должны выбираться по полному расчетному току, т.к. в случае выхода из строя одного из трансформаторов каждый из оставшихся выключателей должен пропускать полный рабочий ток. В ЦТП будут использованы выключатели автоматические воздушные модернизированные (АВМ) с электромагнитными расцепителями.
Автоматы выбираются по полному максимальному расчетному току, который равен:
Выбираем выключатели типа АВМ-10Н (Iном=1000 А) - автоматические воздушные модернизированные с электромагнитными расцепителями, с номинальным током катушки максимального расцепителя 1000 А, время отключения 0,09 с.
ШРА сварочного отделения
· РП.1.
Найдем мощность приемников запитанных от данного РП:
Принимаем к монтажу шинопровод ШРА4-400-32-1УЗ (Iном=400 А) – распределительный шинопровод, состоящий из 4 шин сечением 32 мм2, Iном=400 А, допускают применение в пожароопасных зонах класса П-1, для умеренного климата, для внутренней установки..
Для данного РП выбираем трехполюсный автоматический выключатель типа ВА 52-37-3 (Iном=400 А) с комбинированными расцепителями с повышенной коммутационной способностью.
ШРА гальванического участка и вентиляторной
· РП.2.
Найдем мощность приемников запитанных от данного РП:
Принимаем к монтажу шинопровод ШРА4-400-32-1УЗ (Iном=400 А) – распределительный шинопровод, состоящий из 4 шин сечением 32 мм2, Iном=400 А, допускают применение в пожароопасных зонах класса П-1, для умеренного климата, для внутренней установки..
Для данного РП выбираем трехполюсный автоматический выключатель типа ВА 52-37-3 (Iном=400 А) с комбинированными расцепителями с повышенной коммутационной способностью.
ШРА станочного отделения
· РП.3.1
Найдем мощность приемников запитанных от данного РП:
Принимаем к монтажу шинопровод ШРА4-400-32-1УЗ (Iном=400 А) – распределительный шинопровод, состоящий из 4 шин сечением 32 мм2, Iном=400 А, допускают применение в пожароопасных зонах класса П-1, для умеренного климата, для внутренней установки..
Для данного РП выбираем трехполюсный автоматический выключатель типа ВА 52-37-3 (Iном=400 А) с комбинированными расцепителями с повышенной коммутационной способностью.
· РП.3.2
Найдем мощность приемников запитанных от данного РП:
Принимаем к монтажу шинопровод ШРА4-250-32-1УЗ (Iном=250 А) – распределительный шинопровод, состоящий из 4 шин сечением 32 мм2, Iном=250 А, допускают применение в пожароопасных зонах класса П-1, для умеренного климата, для внутренней установки..
Для данного РП выбираем трехполюсный автоматический выключатель типа ВА 52-35-3 (Iном=250 А) с комбинированными расцепителями с повышенной коммутационной способностью.
Выбор кабелей и магнитных пускателей
Магнитные пускатели это трехполюсный контактор переменного тока, в котором дополнительно встроены два тепловых реле защиты, включенных последовательно в две фазы главной цепи двигателя. Магнитные пускатели предназначены для управления (пуска, остановки, реверса) трехфазных асинхронных двигателей с короткозамкнутым ротором, а также для защиты их от перегрузки. В отдельных случаях магнитные пускатели используются для включения и отключения некоторых электроустановок, требующих дистанционного управления. Защита электродвигателя от перегрузок осуществляется тепловым реле РТ.
Объясняется это тем, что тепловое реле имеет большую тепловую инерцию. При коротком замыкании ток может повредить цепи раньше, чем сработает тепловое реле. Кроме того, контакты магнитных пускателей не рассчитаны на отключение токов короткого замыкания. Поэтому в случае применения магнитных пускателей (с тепловым реле для защиты от перегрузок) для защиты от токов короткого замыкания, необходимо устанавливать последовательно с тепловым реле автоматы с электромагнитными расцепитлями.
Магнитный пускатель отключает двигатель от сети при исчезновении напряжения или его понижении.
Согласно норм ПУЭ автоматические выключатели устанавливаются только на РП отделений, для защиты от больших токов КЗ. На каждом распределительном щите устанавливается по одному магнитному пускателю на каждое ответвление к электроприемнику.
Выбор сечения жил кабелей и магнитных пускателей производится по расчетному полному току исходя из выражения:
где - расчетный ток электроустановки; - номинальная мощность электроустановки.
Для примера рассчитаем ток, и выберем кабель и магнитный пускатель для некоторых потребителей каждого отделения.
Сварочное отделение
Рассчитаем ток, и выберем кабель и магнитный пускатель для сварочного аппарата:
.
Выбираем кабель АВВГ 3х70+1х25
Магнитный пускатель ПМ-12-250-100 (Iном=100 А) – пускатель электромагнитный со степенью защиты IP00, нереверсивный с тепловым реле.
Гальванического участка и вентиляторной.
Рассчитаем ток, и выберем кабель и магнитный пускатель для вентилятора:
.
Выбираем кабель АВВГ 3х25+1х6
Магнитный пускатель ПАЕ-512 (Iном=90 А) – пускатель электромагнитный со степенью защиты IP00, нереверсивный с тепловым реле.
Станочное отделение
Рассчитаем ток, и выберем кабель и магнитный пускатель для агрегатно-расточного станка:
.
Выбираем кабель АВВГ 3х10+1х6
Магнитный пускатель ПА-412 (Iном=50 А) – пускатель электромагнитный со степенью защиты IP00, нереверсивный с тепловым реле.
Таблица 3.
Тип потребителя | Расчетный ток, А | Кол-во. | Магнитный пускатель | Кабель, мм2 |
Сварочные аппараты | 95,476 | 4 | ПМ-12-250-100 | АВВГ 3х70+1х25 |
Гальванические ванны | 68,471 | 5 | ПАЕ-512 | АВВГ 3х25+1х6 |
Вентиляторы | 21,911 | 2 | ПА-412 | АВВГ 3х10+1х6 |
Продольно-фрезерные станки | 50,669 | 2 | ПАЕ-512 | АВВГ 3х25+1х6 |
Горизонтально-расточные станки | 32,866 | 2 | ПА-412 | АВВГ 3х10+1х6 |
Агрегатно-расточные станки | 28,758 | 3 | ПМЕ-212 | АВВГ 3х6+1х4 |
Плоскошлифовальные станки | 34,236 | 2 | ПА-412 | АВВГ 3х10+1х6 |
Краны консольные поворотные | 9,86 | 5 | ПМЕ-112 | АВВГ 3х6+1х4 |
Токарно-шлифовальный станок | 20,541 | 1 | ПА-412 | АВВГ 3х10+1х6 |
Радиально-сверлильные станки | 17,803 | 4 | ПМЕ-212 | АВВГ 3х6+1х4 |
Алмазно-расточные станки | 13,694 | 2 | ПМЕ-212 | АВВГ 3х6+1х4 |
... Так как установка ППЭ в точном геометрическом ЦЭН невозможна из-за нехватки место под строительство, то смещаем ППЭ в сторону питания. 7. Выбор системы питания Система электроснабжения любого промышленного предприятия может быть разделена условно на две подсистемы – питания и распределения электроэнергии внутри предприятия. В систему питания входят питающие линии электропередач (ЛЭП) и ППЭ. ...
... окружающей среды. Рисунок 2.1 Магистральная схема питания электроприёмников Рисунок 2.2 Схема смешанного питания потребителей в системе внутреннего электроснабжения цеха 2.2 Описание выбранной схемы электроснабжения Электроснабжение цеха осуществляется от цеховой трансформаторной подстанции, расположенной на территории цеха, которая получает питание от главной понизительной ...
... основе технико-экономических расчетов определяют рациональное стандартное. Для рассматриваемого завода рациональное напряжение, найденное по эмпирическим формулам будет Uрац= Uрац= Следовательно, для электроснабжения завода выбираем напряжение 35 Кв, так как напряжение 35 кВ имеет экономические преимущества для предприятий средней мощности при передаваемой мощности 5-15 МВт на расстояние ...
... от чрезвычайных ситуаций природного и техногенного характера»; - СНиП; - Стандартом «Безопасность в чрезвычайных ситуациях» (БЧС). Проектирование систем электроснабжение промышленного предприятия проводилась в соответствии с ПУЭ, ПТБ, ПТЭ, на основании ГОСТов, СН и СНиП. 16.1 Обучение и инструктажи работающего персонала по безопасности труда на предприятии Руководители предприятий обязаны ...
0 комментариев