4. Константы скалярного взаимодействия и структура молекул
Косвенное взаимодействие двух ядерных спинов осуществляется через электроны связи. В первом приближении можно отметить, что величина этого взаимодействия убывает с ростом числа связей между ядрами. Из анализа мультиплетности резонансных линий можно попытаться построить альтернативную структуру для неизвестного вещества и даже выбрать наиболее вероятную пространственную структуру.
Строго говоря, константа спин-спинового взаимодействия / определяется не только числом связей между взаимодействующими ядрами, но также зависит от особенностей пространственного распределения электронов. Поскольку пространственное распределение электронов в свою очередь зависит от диэдрального углат.е. угла на который повернуты друг относительно друга две соседние группы ядерных спинов, связанные между собой косвенным спин-спиновым взаимодействием, то и константа / зависит от угла Вследствие этого даже если число связей между взаимодействующими спинами невелико, константа косвенного спин-спинового взаимодействия в ряде случаев уменьшается до нуля. В дальнейшем убедимся, что наличие зависимости константы / от угладает возможность решать достаточно сложные задачи структурной химии. Это, в частности, позволило определить структуру такой сложной молекулы, как протеин.
5. Определение партнера по взаимодействию
Информация о химической структуре молекулы может быть получена после того, как определено, какие из ядер данной молекулы связаны между собой скалярным спин-спиновым взаимодействием. Величина этого взаимодействия позволяет сделать вывод о том, какие из ядер являются соседними в данной химической структуре.
В рассмотренном ранее простом спектре этанола видно, что CH2- и СНз-группы соседствуют одна с другой. В более сложном спектре ЯМР, состоящем из большого числа линий, достаточно сложно сделать вывод о том, какие из взаимодействий вызывают наблюдаемое расщепление спектральных линий. В этом случае стремятся упростить спектр, применяя метод двойного резонанса или развязку. Если в процессе детектирования на систему взаимодействующих спинов подается еще одно РЧ поле, воздействующее селективно на резонансной частоте одного из ядерных спинов, например А, то мультиплетная структура резонансной линии, соответствующей спину ядра X, при условии, что расщепление этой линии обусловлено спин-спиновой связью между спинами А и X, исчезает. Для этанола развязка на частоте, соответствующей метиленовым протонам, приводит к исчезновению расщепления в метильной группе. На рис. 2.5 приведена схема проведения этого эксперимента. Одновременно с возбуждающим импульсом дополнительно подается импульс второго РЧ поля B2, воздействующего на частотев течение сбора данных. Для эффективной развязки величина поля JS2 должна удовлетворять условиюОчевидно, что напряженность поля развязки должна превышать напряженность поля, создаваемого возбужденным спином. В гетероядерном случае при проведении этого эксперимента не возникает каких-либо дополнительных проблем, поскольку разность значений частот возбуждающего поля и поля развязки
достаточно велика. В гомоядерном случае при непрерывном облучении полем JS2 возникают сложности с регистрацией слабого сигнала ЯМР, поскольку трудно избежать воздействия поля развязки на приемник, настроенный на частоту детектируемого сигнала. Поэтому спиновую систему облучают второй частотой не непрерывно, а в импульсном режиме, причем это облучение синхронизировано со сбором данных. Во время действия импульса канал приемника остается закрытым, сбор данных осуществляется во время интервала между импульсами, поэтому, во время сбора данных значительных искажений не возникает. Несмотря на то, что облучение проводится полем Ti2 с напряженностью, усредненной по всему циклу, приведенное выше условие выполняется.
В настоящее время описанные выше эксперименты с развязкой во многом утратили свой смысл. Как увидим в дальнейшем, эту же информацию для всех партнеров по спин-спиновому взаимодействию можно получить из одного эксперимента – двумерного ЯМР-эксперимента, требующего, однако, значительных затрат времени. Относительно больших молекул, для анализа структуры которых необходимо определить большое число констант спин-спинового взаимодействия, такая затрата времени вполне оправдана и, безусловно, компенсируется получаемыми результатами. Отметим, что существует большое число вариантов экспериментов с развязкой, которые могут дать более полную информацию, однако используются при решении специальных задач. Среди них можно отметить «спин-тиклинг». Этот метод не упрощает спектр, а наоборот, приводит к возникновению новых линий – так называемых артефактов, которые появляются в том случае, если при развязке мощность РЧ поля выбирается слишком малой.
В гетероядерном случае такие эксперименты часто направлены не на упрощение спектров, а на получение информации о косвенном спин-спиновом взаимодействии, поскольку развязка приводит к полному исчезновению мультиплетной структуры линий. С этой целью поле развязки воздействует не селективно, на определенной частоте, а в полосе частот. Такой вариант развязки называется широкополосной развязкой. Данный метод можно реализовать просто с помощью быстрой модуляции высокой частотой, подобно тому, как это проводится в стандартном методе шумовой развязки. Более эффективны современные импульсные методы, которые позволяют проводить развязку в достаточно широкой области частот и непосредственно учитывают свойства ядерных спинов.
Однако при использовании широкополосной развязки возникает проблема, состоящая в том, что образец подвергается облучению дополнительным полем в течение достаточно длительного времени. Это особенно сильно сказывается на водных растворах и растворах электролитов, которые достаточно сильно поглощают РЧ излучение, что приводит к разогреву образца. Изменение температуры сказывается на виде спектра in-vitro, а для чувствительных к изменению температуры биологических молекул может приводить к необратимой денатурации. При проведении исследований in-vivo это может привести к потенциально более вредному воздействию, а именно, разрушающему перегреву тканей.
... , основанной на поглощении атомами рентгеновского излучения. Ультрафиолетовая спектрофотометрия — наиболее простой и широко применяемый в фармации абсорбционный метод анализа. Его используют на всех этапах фармацевтического анализа лекарственных препаратов (испытания подлинности, чистоты, количественное определение). Разработано большое число способов качественного и количественного анализа ...
... измерения параметров открывают многообразные пути его применения в промышленности. Внедрению метода ЯМР препятствовали :сложность аппаратуры и ее эксплуатации, высокая стоимость спектрометров, исследовательский характер самого метода. 2.Общая теория ядерного магнитного резонанса. 2.1.Классическое описание условий магнитного резонанса. Вращающийся заряд q можно рассматривать как ...
... , а затем строят калибровочный график, с помощью которого выполняют расчеты. Спектрофотометрия в УФ- и видимой областях — один из наиболее широко используемых физико-химических методов в фармацевтическом анализе. Анализируемые ЛВ должны иметь в структуре молекулы хромофорные группы (сопряженные связи, ароматическое ядро и др.), обусловливающие различные электронные переходы в молекулах и ...
... . На основе оптических методов («просвечивания» газового состава инфракрасным излучением) построена целая гамма газоаналитических приборов, принцип действия которых базируется на регистрации поглощения ИК-излучения газами и автоматического преобразования аналитического сигнала к единицам приведенного коэффициента поглощения. Степень поглощения энергии излучения зависит от концентрации ...
0 комментариев