2 Переход от изображения к оригиналу. Формулы разложения

 

Эти формулы позволяют найти оригинал, если изображение задано дробно-рациональной функцией:

Собственно формулу разложения можно применять только в том случае, когда высшая степень знаменателя выше высшей степени числителя. Если это не так, то сначала нужно поделить числитель на знаменатель, что и позволит привести F(p) к требуемому виду.

Пример:

,

.

Если m<n, то изображение записывают в виде: .

Характеристическое уравнение – выражение F2(p)=0 и, в зависимости от корней в оригинале, появляются соответствующего вида слагаемые, каждое из которых соответствует простейшей дроби.

Чтобы не искать коэффициенты дробей из систем уравнений, пользуются формулами разложения. Они имеют вид:

1) Каждому простому корню характеристического уравнения  в оригинале, будет соответствовать слагаемое , где;

2) Среди корней есть пара комплексно сопряженных: , . Можно воспользоваться предыдущей формулой для каждого корня, но проверка показывает, что коэффициенты перед exp оказываются к.с.ч. и можно упростить процедуру, записывая ответ сразу для двух корней в виде: , где  - корень с положительной мнимой частью.

Пример:

, ,

,

, .

3) Среди корней есть кратные или одинаковые, в этом случае для группы кратных корней получаются сложные выражения, но если таких корней всего два, им в оригинале будет соответствовать такая запись:


Пример:

,

Из примеров видно, что корню pх=0 в оригинале соответствует величина, которую в классическом методе называют принужденной составляющей. Используя все вышеизложенное, можно в таком порядке рассчитывать переходной процесс.

(1) В схеме до коммутации находят  и .

(2) Для схемы после коммутации записывают полную систему уравнений Кирхгофа и применяют к ней прямое преобразование Лапласа. В результате получают систему операторных уравнений.

(3) Из этой системы находят изображение искомой величины и переходят к оригиналу. Так обычно поступают, когда вся схема описывается одним уравнением. В сложных цепях этот путь не эффективен, так как он позволит убрать только один недостаток классического метода (поиск начальных условий). Второй недостаток – уравнения можно писать только по законам Кирхгофа – остался. Чтобы и его убрать, формулируют в операторной форме законы цепей и строят операторные схемы замещения.

3 Законы цепей в операторной форме

 

Применим к законам Кирхгофа для мгновенных значений прямое преобразование Лапласа.

Пример:

В некоторой схеме для некоторого узла имеем уравнение: . Изображение источника легко находится (см. начало операторного метода). Например, если .

Пусть в некотором контуре выполняется уравнение:

,

.

Тогда применяя преобразования Лапласа, получим:

4 Эквивалентные операторные схемы замещения

Анализ полученных выражений позволяет раз и навсегда нарисовать операторные схемы замещения элементов, из которых можно строить операторную схему замещения всей послекоммутационной схемы.

Из примеров видно, что источник тока отображается изображением источника тока, а ЭДС – изображением источника ЭДС.

Если бы в схеме был управляемый источник , то . Аналогично с управляемым источником тока. Для учета взаимных индуктивностей можно поступить аналогично, при этом в схеме замещения появятся дополнительные источники ЭДС  и .

Если же до коммутации в индуктивностях тока не было (расчет переходной и импульсной характеристики, передаточной функции), то никаких дополнительных источников не появится, а просто надо будет по прежним правилам учитывать напряжение взаимной индукции.

Пример:

С учетом сказанного, под операторным методом понимают такой порядок действий.

1) В схеме до коммутации рассчитывают  и .

2) Рисуют операторную схему замещения цепи после коммутации.

3) Самым эффективным методом находят изображение той величины, которую надо найти.

4) Переходят от изображения к оригиналу.


Список литературы:

 

1. Теория электрических цепей: Методические указания к лабораторным работам / Рязан. гос. радиотехн. акад.; Сост.: С.М.Милюков, В.П.Рынин; Под ред. В.П.Рынина. Рязань, 2002. 16 с.,2004. 20 с. (№3282, №3624)

2. Основы теории цепей: Методические указания к курсовой работе / Рязан. гос. радиотехн. акад.; Сост.: В.Н.Зуб, С.М.Милюков. Рязань, 2005. 16 с.

3. Основы анализа и расчета линейных электрических цепей: Учеб. пособие/ Н.А.Кромова. –2-е изд., перераб. и доп.; Иван. гос. энерг. ун-т. –Иваново, 1999. -360 с.

4. Голубев А.Н. Методы расчета нелинейных цепей: Учеб. пособие/ Иван. гос. энерг. ун-т. –Иваново, 2002. -212 с.

5. Теоретические основы электротехники. / Г.И.Атабеков, С.Д.Купалян, А.В.Тимофеев, С.С.Хухриков.-М.: Энергия, 1979. 424 с.

6. М.Р.Шебес. Теория линейных электрических цепей в упражнениях и задачах. М.: Высшая школа, 1990. 528 с.


Информация о работе «Операторный метод расчета переходных процессов в линейных цепях»
Раздел: Физика
Количество знаков с пробелами: 7499
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
4275
4
9

... синусоидальному току, т.е для t≥0 ;  заменяем на р и выражение приравниваем к нулю: (1/с);  (рад/с). 4) С помощью законов коммутации находим начальные условия переходного процесса: (А); (В). Подставляя эти значения в систему (6) при t=0, получаем: (В/с) (А/с) 5) Определим постоянные интегрирования, для этого составим систему уравнений. Первое уравнение системы – это ...

Скачать
25162
1
24

... . В линейной цепи – это линейные дифференциальные уравнения (ЛДУ). Существуют различные методы решения таких уравнений, и соответственно различают различные методы расчета переходных процессов. 2 Способы получение характеристического уравнения Классический метод Классический метод основан на решении ЛДУ методом вариации произвольных постоянных. Любая система ЛДУ может быть сведена к одному ...

Скачать
4750
1
17

... те же выражения для токов и напряжения как и при расчете классическим методом, что подтверждает правильность выполненного расчета переходного процесса. Задача №2 U0=160 B R=80 Oм L=0.8 Гн С=20*10-6 Ф Рис 3. Необходимо найти закон изменения токов во всех ветвях и напряжений UL и UC в зависимости от времени и построить графики. Решение задачи классическим методом Математическая ...

Скачать
5340
0
17

... 1. Для каждого интервала времени сначала рекомендуется провести расчет классическим методом, а затем-операторным. При совпадении результатов расчета обоими методами можно приступать к расчету переходного процесса на следующем интервале времени. 2. Результаты расчетов следует оформить с помощью ПЭВМ в отчете, содержащем описание задания, формулы, числовые значения, графики искомых функций. ...

0 комментариев


Наверх